S=πr², где r - радиус основания. По условию h=2r это, чтобы в осевом сечении получился квадрат. Длина нижнего основания квадрата равна диаметру 2r. Значит боковая сторона квадрата, являющаяся высотой цилиндра тоже равна 2r.
Поэтому формула (1) примет вид
V=π*r² *2r , то есть V=2π*r³ (2).
Подставим в (2) известные по условию значения V=16π.
Как-то сложно сформулировано, непонятно немного. Долго пытался представить чертёж, и примерно решил, что в условии имеется в виду, что ТМ является диаметром некой окружности, следовательно центр окружности (предположительно называемый О) находится на катете RT, ровно посерединке отрезка МТ. И при этом окружность вписана в угол TSR. Всё так? Чертёж я по-любому рисовать не буду, ты уж как-нибудь сам.
Если всё так, то поехали. Проведём отрезок OS. Он пересечёт окружность в некой точке внутри треугольника, обозначим её буквой Х.
Смотрим теперь на два угла: ТОN и ТМN. Оба опираются на одну и ту же дугу TXN. Ещё замечаем, что ТОN является центральным углом окружности, а TMN вписанным. Следовательно TMN составляет половину от TОХ. А также видим, что отрезок SO одновременно является биссектрисой угла TSR, и бьёт точкой Х дугу TN ровно пополам. Следовательно, угол ТОХ, он же TOS равен углу TMN.
А раз такое дело, что отрезок RT пересекает два других: SO и MN под одним и тем же углом, то указанные два отрезка SO и MN параллельны. Вот, как бы, и всё. Привет учительнице.
V=S*h (1), где S - площадь основания, h - высота
S=πr², где r - радиус основания. По условию h=2r это, чтобы в осевом сечении получился квадрат. Длина нижнего основания квадрата равна диаметру 2r. Значит боковая сторона квадрата, являющаяся высотой цилиндра тоже равна 2r.
Поэтому формула (1) примет вид
V=π*r² *2r , то есть V=2π*r³ (2).
Подставим в (2) известные по условию значения V=16π.
16π=2π*r³. Разделим на π обе части.
16=2r³
8=r³
r=2
ответ: радиус равен 2.
Чертёж я по-любому рисовать не буду, ты уж как-нибудь сам.
Если всё так, то поехали. Проведём отрезок OS. Он пересечёт окружность в некой точке внутри треугольника, обозначим её буквой Х.
Смотрим теперь на два угла: ТОN и ТМN. Оба опираются на одну и ту же дугу TXN. Ещё замечаем, что ТОN является центральным углом окружности, а TMN вписанным. Следовательно TMN составляет половину от TОХ. А также видим, что отрезок SO одновременно является биссектрисой угла TSR, и бьёт точкой Х дугу TN ровно пополам. Следовательно, угол ТОХ, он же TOS равен углу TMN.
А раз такое дело, что отрезок RT пересекает два других: SO и MN под одним и тем же углом, то указанные два отрезка SO и MN параллельны. Вот, как бы, и всё. Привет учительнице.