Втреугольнике авс высота вd и биссектриса ак пересекаются в точке о. прямая, проведенная через точку о параллельно ав, пересекает ас в точке l. известно, что угол bol=150 градусов, dl= 6 см. найдите: а) длину отрезка ol; б) углы треугольника aol; в) углы треугольника abd; г) длину стороны ав.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Пусть ребро куба равно = a
(a2 + a2) диагональ основания (синенькая) из т. Пифагора
a2 + (a2+a2) = 62
3a2=36
a2=12
a=√12=2√3
б) найдем косинус угла между плоскостью основания и диагональю куба.
Так как синенькая прямая лежит в плоскости основания, то нам надо найти cos угла между синенькой и красненькой прямой.
d – синенькая прямая
d = √a2+a2 = √2a2=√8·3= √24 = 2√6
m – красненькая прямая
m = 6 (из условия)
cos(α) = d/m = 2√6/6 = √6/3
ответ:
а) 2√3
б) √6/3
зразок