Можно конечно решать геометрически через введение переменных и теорему Пифагора, но, вообще говоря, зная одно из четырех значений тригонометрических функций угла (будь то sin, cos, tg или ctg) через основное тригонометрическое тождество можно найти любое другое значение других тригонометрических функций... У нас дан cos, а нужно найти tg.
Отметим, что угол ∠А располагается в 1 четверти (tg(∠A) нужно брать с плюсом).
Запишем основное тригонометрическое тождество:
sin²(A) + cos²(A) = 1, // Поделим обе части на cos²(A)
Можно конечно решать геометрически через введение переменных и теорему Пифагора, но, вообще говоря, зная одно из четырех значений тригонометрических функций угла (будь то sin, cos, tg или ctg) через основное тригонометрическое тождество можно найти любое другое значение других тригонометрических функций... У нас дан cos, а нужно найти tg.
Отметим, что угол ∠А располагается в 1 четверти (tg(∠A) нужно брать с плюсом).
Запишем основное тригонометрическое тождество:
sin²(A) + cos²(A) = 1, // Поделим обе части на cos²(A)
tg²(A) + 1 = 1 / cos²(A),
tg(A) = +√((1/cos²(A)) - 1) = +√((1/(25/89)) - 1) = +√((89/25) - 1) = √(64/25) = 8/5 = 1.6
ответ: tg(A) = 1.6