Втреугольнике авс проведена медиана al.прямая,проходящая через точку l параллельно ас,пересекает отрезок ав=8 в точке n.найдите медиану угол nlc,проведённую из точки l
1) 6*3=18(см) высота 2) 18*6:2=54(см²) площадь треугольника
пусть С-гипотенуза, А и В катеты С²=А²+В²=4²+3²=16+9=25 С=√25=5 С=5 5 см гипотенуза 4 * 3 : 2 = 6(см²) площадь треугольника
Площадь ромба равна произведению его диагоналей: 6 * 8 =48(см²) площадь Диагонали ромба в точке пересечения делятся пополам и диагонали ромба разбивают ромб на 4 одинаковых прямоугольных треугольника, гипотенуза каждого из них является стороной ромба и равна: С²=4²+3²=25 С=√25=5 Сторона ромба=5 см 5 * 4 = 20 (см) периметр ромба
Площадь параллелограмма равна произведению высоты и стороны, к которой проведена высота. Сторона параллелограмма дана ВС=19. Необходимо найти высоту h. Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ. Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ. Соединим концы биссектрис углов А и В и обозначим буквами M и N. Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов. Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14. Площадь равна 14*19
2) 18*6:2=54(см²) площадь треугольника
пусть С-гипотенуза, А и В катеты
С²=А²+В²=4²+3²=16+9=25
С=√25=5
С=5 5 см гипотенуза
4 * 3 : 2 = 6(см²) площадь треугольника
Площадь ромба равна произведению его диагоналей:
6 * 8 =48(см²) площадь
Диагонали ромба в точке пересечения делятся пополам и диагонали ромба разбивают ромб на 4 одинаковых прямоугольных треугольника, гипотенуза каждого из них является стороной ромба и равна:
С²=4²+3²=25
С=√25=5
Сторона ромба=5 см
5 * 4 = 20 (см) периметр ромба
Сторона параллелограмма дана ВС=19.
Необходимо найти высоту h.
Вообще-то она равна 14, т.е. удвоенное расстояние от точки К до стороны АВ.
Надо доказать,что расстояние от точки К до стороны ВС равно расстоянию от точки К до стороны АВ.
Соединим концы биссектрис углов А и В и обозначим буквами M и N.
Полученная фигура ABNM - ромб. Доказывается равнобедренность треугольников ABN и AMN через равенство противолежащих углов.
Проведем перпендикуляры из точки К к сторонам ВС и AD. Они равны как высоты равных треугольников и равны расстоянию от точки К к стороне АВ, т. е. равны 7. Таким образом высота параллелограмма равна 14.
Площадь равна 14*19