Втреугольнике авс известны длины сторон ав=32 ас=64, точка о-центр окружности, описанной около треугольника авс. прямая вд, перпендикулярная прямой ао, пересекает сторону ас в точке д. найдите сд
Если прямая АО пересекает окружность в точке E, то AE - диаметр, и значит ABE - прямоугольный треугольник. При этом BD лежит на его высоте, проведенной к гипотенузе. Значит ∠ABD=∠AEB=∠ACB. Последнее равенство здесь верно т.к. углы AEB и ACB вписанные в окружность и опираются на одну дугу AB. Итак, треугольники ABD и ACB подобны по двум углам. Отсюда AD/AB=AB/AC, т.е. AD/32=32/64, откуда AD=16 и CD=AC-AD=64-16=48.
Итак, треугольники ABD и ACB подобны по двум углам. Отсюда AD/AB=AB/AC, т.е. AD/32=32/64, откуда AD=16 и CD=AC-AD=64-16=48.