В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
Номер 1
Пересеклись две прямые РК и ЕМ,в в итоге образовались две пары вертикальных углов
<ЕDK=<PDM=110 градусов
<РDE=<МDK=(360-110•2):2=(360-220):2=
140:2=70 градусов,как вертикальные
Теперь в обоих треугольниках мы знаем по два угла,вычислим неизвестные
<Е=180-(70+65)=180-135=45 градусов
<К=180-(70+45)=180-115=65 градусов
Треугольники ЕРD и MKD равны между собой по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
РЕ=МК ,по условию задачи
<К=<ЕРК=65 градусов
<Е=<ЕМК=45 градусов
Номер 2
В равнобедренном треугольнике углы при основании равны между собой
<А=<С=156:2=78 градусов
<В=180-156=24 градуса
Номер 3
Т к треугольники не только прямоугольные,но и равнобедренные,то углы их при основании равны и каждый угол равен 45 градусов
<САВ=<АСD=45 градусов
Эти углы называются внутренними накрест лежащими
Если при пересечении двух прямых АВ и CD третьей секущей АС,накрест лежащие углы равны,то AB||CD
Номер 4
Сумма острых углов прямоугольного треугольника равна 90 градусов
90-60=30 градусов
Катет,лежащий против угла 30 градусов,в два раза меньше гипотенузы
Катет Х
Гипотенуза 2Х
ЗХ=42 см
Х=42:3=14 см
Гипотенуза равна
2•14=28 см
Объяснение:
В параллелограмме ABCD BD=10 см AB = 12 см. Найдите периметр ΔBOC ( О точка пересечения диагоналей) , если АС - BD = 8 см .
ответ: ( 14+2√17 ) см
Объяснение: АС - BD = 8 (см) ⇒ АС= BD + 8 см =10 см+8 см =18 см
P(ΔBOC) = BO + OC + BC = BD/2 +AC/2 + BC = 5+ 9 +BC = 14 + BC
* * * Диагонали параллелограмма точкой пересечения делятся пополам * * *
Определим сторону BC. Известно: 2(a²+b²) =d₁ ²+d₂²
2(AB² +BC²) =BD² + AC² ⇔ 2(12² +BC²) =10² + 18² ⇒ BC² =68 ;
BC =2√17 см
Окончательно: P(ΔBOC) = ( 14+2√17 ) ( см ) .
Номер 1
Пересеклись две прямые РК и ЕМ,в в итоге образовались две пары вертикальных углов
<ЕDK=<PDM=110 градусов
<РDE=<МDK=(360-110•2):2=(360-220):2=
140:2=70 градусов,как вертикальные
Теперь в обоих треугольниках мы знаем по два угла,вычислим неизвестные
<Е=180-(70+65)=180-135=45 градусов
<К=180-(70+45)=180-115=65 градусов
Треугольники ЕРD и MKD равны между собой по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
РЕ=МК ,по условию задачи
<К=<ЕРК=65 градусов
<Е=<ЕМК=45 градусов
Номер 2
В равнобедренном треугольнике углы при основании равны между собой
<А=<С=156:2=78 градусов
<В=180-156=24 градуса
Номер 3
Т к треугольники не только прямоугольные,но и равнобедренные,то углы их при основании равны и каждый угол равен 45 градусов
<САВ=<АСD=45 градусов
Эти углы называются внутренними накрест лежащими
Если при пересечении двух прямых АВ и CD третьей секущей АС,накрест лежащие углы равны,то AB||CD
Номер 4
Сумма острых углов прямоугольного треугольника равна 90 градусов
90-60=30 градусов
Катет,лежащий против угла 30 градусов,в два раза меньше гипотенузы
Катет Х
Гипотенуза 2Х
ЗХ=42 см
Х=42:3=14 см
Гипотенуза равна
2•14=28 см
Объяснение: