Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
Задача 2
Прямоугольный треугольник с гипотенузой 25 см и проведенной к ней высотой равной 12 см вращается вокруг гипотенузы. Найдите площадь поверхности тела, полученного при вращении.
Решение: АВ=25 см, СН=12 см
Sтела=Sбок.кон(1) + Sбок.кон(2)
h2=ac*bc (высота в прямоугольном треугольнике)
CH2=AH*HB. Пусть AH=x, тогда НВ=25-x.
x(25-x)=122;
x2-25x+144=0;
АН=16 см, НВ=9 см Из ΔАНС по теореме Пифагора АС2=АН2+СН2
АС=20см-(образующая 1)
Sбок.кон(1)=πrl=π*12*20=240π (cм2 )
Из ΔВНС СВ2=СН2+НВ2
CB=15 (см).- (образующая 2).
Sбок.кон(2)=π*12*15=180π (см2).
Sтела=240π +180π=420π (см2)
ответ: 420π см2
Задача 3
Прямоугольная трапеция с основаниями 5 см и 10 см и большей боковой стороной равной 13 см вращается вокруг большего основания. Найдите площадь поверхности тела вращения.
АС=5 см, НК=10см, СК=13 см.
ОК=НК-АС=5 см; l=13 см
Из ΔСОК по теореме Пифагора СО2=СК2-ОК2;
СО=r =12 см;
Sбок.кон=πrl=π*12*13=156π (см2);
Sцил.=2πrh+πr2=2π*12*5+144π=264π (см2);
Sтела= Sбок.кон.+Sцил.= 156π +264π=
=420π (см2);
ответ: 420π см2
Задача 4
Прямоугольная трапеция с основаниями 5 см и
10см и большей боковой стороной равной 13 см вращается
Вокруг меньшего основания. Найдите площадь поверхности
тела вращения. Прямоугольная трапеция с основаниями
5 см и 10 см и большей боковой стороной равной 13 см
вращается вокруг меньшего основания. Найдите площадь
Поверхности тела вращения.
ВС=5 см, АD=10 см,АВ=13 см
Sтела= Sбок.кон.+Sцил(1основание)
Sтела= πrl+2πrh+πr2; АК=АD-ВС=5 (см);
Из ΔАКВ - прямоугольного по теореме Пифагора
КВ2=АВ2-АК2;
КВ=12см – r
AB=l – образующая
h=AD=10 см
Sтела=π*12*13 + 2π*12*10+144π=540π (см2).
ответ: 540π см2
Задача 5.
Равнобокая трапеция с основаниями 4 см и 10 см и
высотой 4 см вращали вокруг большего основания. Найдите
площадь поверхности тела вращения.
АВ=4см, DC=10 см, ВН=4 см
Sтела=2 Sбок.кон.+Sбок.цил.
Sбок.кон=πrl
HC=10-2/2=3.
Из ΔВНС по теореме Пифагора СВ2=СН2+НВ2;
CВ=5 см.-l (образующая).
BH=r=4 cм;
Sбок.кон=π*4*5=20π (см2)
h=HH1=10 – (3+3)=4 см. Sбок.цил.=2πrh=2*4*4*π=32π (см2)
Sтела=40π+32π=72π (см2).
ответ: 72π см2.
Задача 6
Параллелограмм со стороной 3 см и 6 см , острым углом А= 60° вращается вокруг оси, проходящей через вершину острого угла, параллельно высоте параллелограмма. Найти объем полученного тела вращения.
Vт=Vук – Vк; Vук=1/3П h(R2+R12+RR1); Vк=1/3ПR2h; угол D=A, угол СDC1=60°, ∆CC1D – равносторонний, СС1=6см, Rк=3см, h
№1.
Угол между касательной и радиусом, проведенным к ней равен 90 градусов, поэтому ОА будет гипотенузой в треугольнике АВО, а ОВ - катетом. Дальше из теоремы Пифагора:
АВ=
и того, АВ=8
ответ:8см.
№2.
уголA+уголB+уголC=180°( по теореме о сумме углов в треугольнике)
Уравнение:
Пусть Х будет угол А, тогда 3Х угол В, а 5Х угол С
Х+3Х+5Х=180
9Х=180
Х=180:9
Х=20°
20*3 равно=60градусов
ответ: угол В= 60 градусов, угол С= 100 градусов.
№3.
Длина диаметра 20 см. Концы диаметра и данная точка окружности образуют вписанный угол, опирающийся на диаметр. Вписанный угол, опирающийся на диаметр, прямой.
Значит, получившейся треугольник будет прямоугольным. Расстояние от другого конца диаметра до данной точки найдем по теореме Пифагора, как длину катета прямоугольного треугольника:
=(20-16)(20+16)=4*36=144
см
ответ:12 см.
идеально
Объяснение: