AB, AC і MN - дотичні, проведені до кола (B, C, K - точки дотику). Знайдіть периметр ΔAMN , якщо AB = 8 см.
Известная теорема: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
MK = MB
NK = NC
AC = AB
P (ΔAMN) =AM + MN + AN = AM +( MK + NK ) +AN =
AM +( MB + NC ) +AN = (AM + MB) + (AN + NC) = AB +AC = 2*AB
AB, AC і MN - дотичні, проведені до кола (B, C, K - точки дотику). Знайдіть периметр ΔAMN , якщо AB = 8 см.
Известная теорема: Если из какой-нибудь точки провести две касательные к окружности, то их отрезки от данной точки до точек касания равны между собой и центр окружности находится на биссектрисе угла, образованного этими касательными.
MK = MB
NK = NC
AC = AB
P (ΔAMN) =AM + MN + AN = AM +( MK + NK ) +AN =
AM +( MB + NC ) +AN = (AM + MB) + (AN + NC) = AB +AC = 2*AB
ответ: P (ΔAMN) = 2*AB = 2*8 cм = 16 см
Объяснение:
На продолжение отрезка AD опустим высоту из точки С в точку H.
Имеем прямоугольный треугольник ACH катет которого СН противолежит углу А=30. а гипотенуза АС=8.
Отсюда СН=АС:2=8:2-4 (по св-ву прямоугольного треугольника с углом 30)
Имеем сторону параллелограмма AD=7 и его высоту СН=4, отсюда S(ABCD)=AD*CH=7*4=28
по св-ву параллелограмма, его диагонали делятся точкой пересечения пополам: AO = OC, OB = OD, значит ВО является медианой тр-ка ABC.
По св-ву медианы тр-ка, она разбивает его на два равновеликих (по площади) треугольника, отсюда АВО=СВО