ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Треугольник равнобедренный, значит по свойству равноб. треугольника углы при основании равны.
а)обозначим угол противолежащий основанию через х, значит углы при основании соответственно равны 2х и 2х, сумма всех углов в треугольнике равна 180 град., составим ур-ие: х+2х+2х=180, решив его получаем, что х=36 град., значит углы при вершине 36град, а уголы при основании равны 36*2=72 град.
б)пусть угол при основании х град., тогда смежный с ним угол равен 3х, т.к. сумма смежных углов 180 град., то получаем х+3х=180, отсюда х=45 град., следовательно углы при основании по 45 град, а третий угол 90 град. (по теореме о сумме углов треугольника).
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Треугольник равнобедренный, значит по свойству равноб. треугольника углы при основании равны.
а)обозначим угол противолежащий основанию через х, значит углы при основании соответственно равны 2х и 2х, сумма всех углов в треугольнике равна 180 град., составим ур-ие: х+2х+2х=180, решив его получаем, что х=36 град., значит углы при вершине 36град, а уголы при основании равны 36*2=72 град.
б)пусть угол при основании х град., тогда смежный с ним угол равен 3х, т.к. сумма смежных углов 180 град., то получаем х+3х=180, отсюда х=45 град., следовательно углы при основании по 45 град, а третий угол 90 град. (по теореме о сумме углов треугольника).