Продолжим боковые стороны до их пересесечения. Образуется прямоугольный равнобедренный треугольник. Пусть большее основание трапеции А. Катет треугольника А*sqrt(2)/2. Другой катет такой же. Биссектриса делит сторону в отношении прилежащих сторон. Значит боковая сторона В удовлетворяет соотношению: В/(A*sqrt(2)/2-B)=sqrt(2) B=A-B*sqrt(2) B=A/(1+sqrt(2)) Проекция боковой стороны на основание: А*(sqrt(2)/2)/(1+sqrt(2)) Меньшее основание это разность большего основания и двух проекций: А-A*sqrt(2)/(1+sqrt(2)). Тогда : А-A*sqrt(2)/(1+sqrt(2))+A*sqrt(2)*2/(1+sqrt(2))=36*sqrt(2) A +A*sqrt(2)-A*sqrt(2)+A*sqrt(2)*2=36*sqrt(2)+72 A*(1+2sqrt(2))=36*(sqrt(2)+2) A=36*(sqrt(2)+2)/(1+2sqrt(2))
Дописал до этого места. Больше нет времени. Пытался отправить как комментарий ( может пригодится). Как коммент. пишут длинный. Может еще и с ошибкой. Не нужно, отметьте, как нарушение.
Боковые грани правильной пирамиды - равнобедренные треугольники с боковыми сторонами, равными боковому ребру и основанием, равным стороне основания пирамиды.
Площадь боковой поверхности - сумма площадей трех равных граней. Боковое ребро найдено =16.
Найти сторону АВ основания длина описанной окружности.
R=a:√3 - формула радиуса описанной окружности правильного треугольника, где а- сторона треугольника. ⇒
а=R•√3⇒
АВ=8•3=24
S ∆ AMB=MH•AB:2=MH•AH
Из ⊿ МОН по т.Пифагора
МН²=МО²+ОН²
ОН - радиус вписанной в правильный треугольник окружности и равен половине радиуса описанной,⇒
В/(A*sqrt(2)/2-B)=sqrt(2)
B=A-B*sqrt(2)
B=A/(1+sqrt(2))
Проекция боковой стороны на основание: А*(sqrt(2)/2)/(1+sqrt(2))
Меньшее основание это разность большего основания и двух проекций:
А-A*sqrt(2)/(1+sqrt(2)).
Тогда : А-A*sqrt(2)/(1+sqrt(2))+A*sqrt(2)*2/(1+sqrt(2))=36*sqrt(2)
A +A*sqrt(2)-A*sqrt(2)+A*sqrt(2)*2=36*sqrt(2)+72
A*(1+2sqrt(2))=36*(sqrt(2)+2)
A=36*(sqrt(2)+2)/(1+2sqrt(2))
Дописал до этого места. Больше нет времени. Пытался отправить как комментарий ( может пригодится). Как коммент. пишут длинный.
Может еще и с ошибкой. Не нужно, отметьте, как нарушение.
Боковые грани правильной пирамиды - равнобедренные треугольники с боковыми сторонами, равными боковому ребру и основанием, равным стороне основания пирамиды.
Площадь боковой поверхности - сумма площадей трех равных граней. Боковое ребро найдено =16.
Найти сторону АВ основания длина описанной окружности.
R=a:√3 - формула радиуса описанной окружности правильного треугольника, где а- сторона треугольника. ⇒
а=R•√3⇒
АВ=8•3=24
S ∆ AMB=MH•AB:2=MH•AH
Из ⊿ МОН по т.Пифагора
МН²=МО²+ОН²
ОН - радиус вписанной в правильный треугольник окружности и равен половине радиуса описанной,⇒
ОН=4√3
МН=√(МО²+ОН²)=√(64+48)=√112=4√7⇒
S бок=3•S∆ AMB=3•12•4√7=144√7 см²