Втрапеции авсd (ad || bc) ad=29 см, bc=17 см. параллельно основаниям проведены отрезки ek и mn, причем e и m принадлежат стороне ab, а k и n – стороне cd. найдите ek, если be=em=ma.
Из вершины В опустим на большее основание трапеции отрезок ВН, параллельный стороне CD. Трапеция разделилась на две фигуры: параллелограмм ВСDН и треугольник АВН.
По условию задачи сторона АВ поделена на 3 равных отрезка, ЕК параллельна основанию.
Cделаем рисунок к задаче.
Из вершины В опустим на большее основание трапеции отрезок ВН, параллельный стороне CD. Трапеция разделилась на две фигуры: параллелограмм ВСDН и треугольник АВН.
По условию задачи сторона АВ поделена на 3 равных отрезка, ЕК параллельна основанию.
Треугольники АВН и РВЕ подобны.
ВЕ:ВА=1:3 ⇒ЕР:АН=1:3
ЕР:12=1:3
3 ЕР=12
ЕР=4
ЕК=4+17=21 см