Пусть А, В и С - это вершины треугольника, причем А и В - вершины при основании. Точка пересечения боковых медиан - О. Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3). В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2. Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ). Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ). АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6. S = СМ * АВ /2 = 6 * 4 / 2 = 12.
треугольник АВС, АС основание, ВН высота на АС, АМ - медиана на ВС, ВМ=МС, СК биссектриса угла С, МН-отрезо, О - пересечение отрезка и биссектрисы, КО=ОС, ОН=ОМ, треугольник МНС прямоугольный, МН-медиана в этом треугольнике=1/2 гипотенузы ВС=ВМ=МС, треугольник МНС равнобедренный, МН=МС, но СО биссектриса=медиане (ОН=ОМ). значит треугольник равносторонний, все углы=60, ОМ- средняя линия треугольника КВС и параллельна ВК, тогда уголНМС=60=уголВ как соответственные, уголС=180-60-60=60, треугольник АВС равносторонний
Проведем третью медиану СМ из вершины С, она тоже пройдет через точку О (т.к. все медианы пересекаются в одной точке - эта точка делит каждую медиану в отношении 1:2, т.е. ОМ = СМ/3).
В равнобедренном теругольнике медиана, проведенная из вершины, является одновременно и биссектрисой этого угла, и высотой. Основание теугольника известно по условию. Если мы найдем величину высоты СМ, то легко найдем площадь треугольника - S = СМ * АВ /2.
Заметим, что треугольник АОВ прямоугольный (по условию, т.к. медианы пересекаются под прямым углом) и равнобедренный ( трегольники АОС и ВОС равны по равенству двух сторон и углов между ними, т.к. АС=ВС по условию, СО - общая сторона и углы АСО и СОВ равны, поскольку СО - биссектриса угла АСВ, следовательно, АО=ОВ).
Углы при основании треугольника АОВ равны и составляют 45 градусов каждый. Поэтому треугольник АОМ тоже равнобедренный (угол АМО прямой, а угол ОАМ 45 градусов, значит, и угол АОМ тоже 45 градусов). Следовательно, АМ=ОМ (как стороны равнобедренного треугольника АОМ).
АМ равна половине основания АВ (т.к. СМ - медиана), следовательно ОМ =2. Полная длина медианы СМ=ОМ * 3 = 6.
S = СМ * АВ /2 = 6 * 4 / 2 = 12.