В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
milanaegorova90
milanaegorova90
24.12.2021 07:57 •  Геометрия

Все двугранные углы при основании тетраэдра равны по 60°. стороны основания равны 20 см, 21см, 29 см. найдите площадь боковой поверхности тетраэдра

Показать ответ
Ответ:
linassglazunov
linassglazunov
14.08.2020 08:48
То, что указанные двугранные углы равны, говорит о том, что боковые грани одинаково наклонены к плоскости основания, значит основание высоты тетраэдра лежит в центре вписанной в основание окружности.
Площадь боковой поверхности пирамиды: Sб=p·l, где р - полупериметр, l - апофема боковой грани.
р=(20+21+29)/2=35 см.
r=S/p, где S - площадь основания.
По формуле Герона S=√(p(p-a)(p-b)(p-c))=√(35(35-20)(35-21)(35-29))=210 cм².
r=210/35=6 см.
В треугольнике, образованном найденным радиусом, высотой пирамиды и апофемой, угол между апофемой и радиусом равен 60° (по условию). Апофема: l=r/cos60=6/0.5=12 см.
Sб=35·12=420 см² - это ответ.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота