Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Проведём перпендикуляр А!Р⊥АВ. В равнобедренной трапеции АА1В1В АР=(АВ-А1В1)/2=(4-2)/2=1 дм. В прямоугольном тр-ке АА1Р А1Р²=АА1²-АР²=2²-1²=3, А1Р=√3 дм - апофема.
Точки О и О1 - центры оснований (квадратов), О1К⊥А1В1, ОМ⊥АВ, значит О1К=А1В1/2=1 дм, ОМ=АВ/2=2 дм. Проведём КН⊥ОМ. МН=ОМ-ОН=ОМ-О1К=2-1=1 дм. В тр-ке KMH КН²=КМ²-МН², КМ=А1Р. КН²=3-1=2, О1О=КН=√2 дм - высота.
Если нужны высота и апофема полной пирамиды, то отрезок А1В1 в боковой грани пирамиды с основанием АВ меньше этого основания в два раза и А1В1║АВ, значит А1В1 - средняя линия треугольника (боковой грани полной пирамиды). Следовательно апофема полной пирамиды равна КМ·k=КМ·2=2√3 дм, а высота 2·О1О=2√2 дм.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
Проведём перпендикуляр А!Р⊥АВ. В равнобедренной трапеции АА1В1В АР=(АВ-А1В1)/2=(4-2)/2=1 дм.
В прямоугольном тр-ке АА1Р А1Р²=АА1²-АР²=2²-1²=3,
А1Р=√3 дм - апофема.
Точки О и О1 - центры оснований (квадратов), О1К⊥А1В1, ОМ⊥АВ, значит О1К=А1В1/2=1 дм, ОМ=АВ/2=2 дм.
Проведём КН⊥ОМ. МН=ОМ-ОН=ОМ-О1К=2-1=1 дм.
В тр-ке KMH КН²=КМ²-МН², КМ=А1Р.
КН²=3-1=2,
О1О=КН=√2 дм - высота.
Если нужны высота и апофема полной пирамиды, то отрезок А1В1 в боковой грани пирамиды с основанием АВ меньше этого основания в два раза и А1В1║АВ, значит А1В1 - средняя линия треугольника (боковой грани полной пирамиды). Следовательно апофема полной пирамиды равна КМ·k=КМ·2=2√3 дм, а высота 2·О1О=2√2 дм.