Вравнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходят из разных вершин равен 75°. чему может быть равен угол при основании этого треугольника?
Пусть трапеция АВСД, где АД=10, а ВС меньшее основание. Так как трапеция равнобедренная, то АВ=СД. Диагональ АС делит угол ВАД пополам, то есть углы ВАС и САД равны. Так как АВСД трапеция, то АД параллельна ВС, значит углы САД и ВСА накрест лежащие углы, а накрест лежащие углы равны. Значит треугольник АВС равнобедренный, так как у него два равных угла при основании, из этого следует, что сторона АВ равна стороне ВС, а значит и стороне СД трапеции, так как трапеция равнобедренная. Пусть длина этих равных сторон будет х, тогда х+х+х+10=28 (периметр трапеции, который нам известен из условия задачи). Тогда х=(28-10)/3=6 см. ответ: длина меньшего основания 6 см
S=πRl+πR², ( l образующая)
Sполн.пов.=πR*(l+R)
1. сечение конуса - равнобедренный прямоугольный треугольник: гипотенуза - хорда х=6, катеты - образующие конуса l.
по теореме Пифагора:
x²=l²+l², 6²=l²+l², l²=18, l=3√2
2. осевое сечение конуса - равнобедренный треугольник основание - диаметр основания конуса d, боковые стороны - образующие конуса l.
по теореме косинусов: d²=l²+l²-2*l*l*cos120°
d²=18+18-2*√18*√18*(-1/2)
d²=54, d=3√6. R=1,5√6
S=π*1,5(√6*3√2+1,5)=1,5*π*(6√2+1,5)
S=1,5π*(6√2+1,5)
Пусть длина этих равных сторон будет х, тогда х+х+х+10=28 (периметр трапеции, который нам известен из условия задачи). Тогда х=(28-10)/3=6 см.
ответ: длина меньшего основания 6 см