Войти
Регистрация
Спроси ai-bota
В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Показать больше
Показать меньше
marina0510251
30.07.2020 11:45 •
Геометрия
Вравнобедренном треугольнике abc из любого угла проведена медиана длиной 8 см, найдите основание ac
Показать ответ
Ответ:
Kanesan
01.12.2021 09:44
Обозначим через ВК высоту, опущенную на сторону АС.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
0,0
(0 оценок)
Ответ:
kshig
12.05.2021 03:10
R=О1В=5, r=О2В=3. АВС - равносторонний треугольник. m - общая касательная.
Пусть ∠МВС=х, тогда ∠АВМ=60-х.
Углы МВС и АВМ - углы между касательной и хордой, значит ∠АО1В=2(60-х) и ∠СО2В=2х.
Формула хорды: l=2Rsin(α/2), где α - градусная мера хорды.
АВ=2·О1В·sin(60-х)=2R·sin(60-x),
ВС=2·О2В·sinx=2r·sinx,
АВ=ВС, значит
2R·sin(60-x)=2r·sinx,
2·5(sin60·cosx-cos60·sinx)=2·3sinx,
10(√3cosx/2-sinx/2)=6sinx,
5√3cosx-5sinx=6sinx,
11sinx=5√3cosx,
11tgx·cosx=5√3cosx,
tgx=5√3/11.
-----------------------------------------------
tg²x+1=1/cos²x,
tg²x+1=1/(1-sin²x),
1-sin²x=1/(tg²x+1),
sin²x=1-[1/tg²x+1)],
sinx=5√3/14.
------------------------------------------------
Итак, ВС=2r·sinx=6·5√3/14=15√3/7≈3.7 см - это ответ.
0,0
(0 оценок)
Популярные вопросы: Геометрия
petechkaPetrovPetor
03.06.2022 16:49
Найдите наименьшее расстояние между окружностями И...
Wow01
05.08.2021 08:28
Найдите уравнение центральной окружности проходящей через точку a(-1:3)...
друг100
11.05.2022 23:07
надо Дан треугольник ABC, в котором AB=13, AC=9, BC=8. Одна его вневписанная окружность касается продолжения стороны BC за точку B в точке X, а другая вневписанная окружность касается...
Dashahaahaa
13.02.2023 14:34
На сторонах угла с вершиной О отметили точки А1 и А2 на одной стороне А1 и В2 на другой стороне оказалось что ОА1=ОВ1 и ОА2=ОВ . Докажите , что точка пересечения отрезков А1 , B2...
киви1403
27.03.2022 01:22
Вектор ab с началом в точке а (-3; 2) имеет координаты (6; -15) найдите абцису в точке в...
MrQelen
27.03.2022 01:22
Диагональ ас прямоугольника авсд равна 3см и составляет со стороной ад угол 37 градусов.найдите площадь прямоугольника авсд....
Mariaxmxm
27.03.2022 01:22
Периметр вписанного в круг правильного треугольника меньше периметра вписанного в этот же круг квадрата на 5. найдите периметр вписанного в этот круг правильного шестиугольника...
sanekYakimov
27.03.2022 01:22
Вчетырехугольнике авсд ав=сд угол в = 70 гр. угол вса=60гр. угол асд=50гр. докажите что вс=ад...
Den2228
16.01.2023 04:23
Существует ли выпуклый четырехугольник углы которого равны 114 , 66 ,85 , 115 градусам.ответ обоснуйте...
kamilamila2005
14.10.2021 13:38
от стороны развернутого угла АОВ в одну полуплоскость отложены угол АОС = 20° и АОД =80° найдите угол между бисектрисамми углов СОД и ДОВ...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.
Пусть ∠МВС=х, тогда ∠АВМ=60-х.
Углы МВС и АВМ - углы между касательной и хордой, значит ∠АО1В=2(60-х) и ∠СО2В=2х.
Формула хорды: l=2Rsin(α/2), где α - градусная мера хорды.
АВ=2·О1В·sin(60-х)=2R·sin(60-x),
ВС=2·О2В·sinx=2r·sinx,
АВ=ВС, значит
2R·sin(60-x)=2r·sinx,
2·5(sin60·cosx-cos60·sinx)=2·3sinx,
10(√3cosx/2-sinx/2)=6sinx,
5√3cosx-5sinx=6sinx,
11sinx=5√3cosx,
11tgx·cosx=5√3cosx,
tgx=5√3/11.
-----------------------------------------------
tg²x+1=1/cos²x,
tg²x+1=1/(1-sin²x),
1-sin²x=1/(tg²x+1),
sin²x=1-[1/tg²x+1)],
sinx=5√3/14.
------------------------------------------------
Итак, ВС=2r·sinx=6·5√3/14=15√3/7≈3.7 см - это ответ.