Впрямоугольный треугольник вписана окружность, центр которой удален от вершины прямого угла на расстоянии . найдите площадь треугольника, если точка касания делит гипотенузу в отношении 3 : 10
Найдем радиус: По теореме Пифагора r√2 = √8 ⇔ r=2;
Пусть отрезки гипотенузы, на которые разбила ее точка касания равны 10x и 3x; Тогда один из катетов равен 3x+2, второй 10x+2, а гипотенуза равна 13x; (3x+2)²+(10x+2)²=169x² ⇒ x=1; Площадь равна (3x+2)(10x+2)/2 = 5*12/2 = 30
Найдем радиус: По теореме Пифагора r√2 = √8 ⇔ r=2;
Пусть отрезки гипотенузы, на которые разбила ее точка касания равны 10x и 3x; Тогда один из катетов равен 3x+2, второй 10x+2, а гипотенуза равна 13x; (3x+2)²+(10x+2)²=169x² ⇒ x=1; Площадь равна (3x+2)(10x+2)/2 = 5*12/2 = 30