Смотрим картинго (пропорци, между прочим, соблюдены): Вспоминаем чудесное правило: При пересесечении диагоналей трапеции, треугольники, лежащие на основаниях подобны. Доказывется это легко и самостоятельно, через равенство двух пар накрест лежащих и одной пары вертикальных углов. ΔAMD~ΔCMB, MH и МО - высоты ΔAMD и ΔCMB, соответственно. Значит
S(ABM)/S(AMD) =2/3 ;
S(ABM)/S(AMD) +1 =2/3+1 ;
S(ABD)/S(AMD) =5/3 ⇔S(AMD) =(3/5)*S(ABD) ⇒
S(AMD)=(3/5)*(24*10/2) =3*24*10/10 =72 (кв.ед.).
* * * ИЛИ по другому Как усложнять себе жизнь * * *
Обозначаем S₁ =S(AMD); S₂ =S(CMB).
S(ABCD) =(√S₁+√S₂)² ;
(16+24)/2 * 10 =(√S₁+√S₂)² ;
200 = (√S₁+√S₂)² .
ΔAMD~ΔCMB ⇒S₂/S₁ =(BC/AD)² ; S₂/S₁ =(16/24)² ⇒√S₂ =(2/3)*√S₁.
-------
следовательно:
200 =((1+2/3)√S₁)² ;
200 =(25/9)* S₁ ;
S₁ =200*9/25 =72 (кв.ед.) .
Вспоминаем чудесное правило:
При пересесечении диагоналей трапеции, треугольники, лежащие на основаниях подобны. Доказывется это легко и самостоятельно, через равенство двух пар накрест лежащих и одной пары вертикальных углов.
ΔAMD~ΔCMB, MH и МО - высоты ΔAMD и ΔCMB, соответственно. Значит
Если кто-то готов с этим поспорить ну дерзните...
Всё...