1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем: БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2. Подставляя предыдущее равенствополучим: (2.4*АК)^2+АК^2=АБ^2 или 6.76*АК^2=26^2=676 Отсюда АК^2=100 АК=10. 2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции. 3. АД=АК+КМ+МД=10+7+10=27.
Т к по условию угол СВА=ВСД=120 градусов, то угол А=Д=180-120=60градусов.
Проведем высоту ВК и получим прямоугольный треугольник АВК. Рассмотри его. Угол АВК=180-(60+90)=30 градусов => АК=1/2АВ, тогда пусть АК=х. Если провести вторую высоту из угла С, то отрезки АК=КР=РД=х (т е АД=3х), а АВ=СД=2х. ВС=КР=х.
Sтрапеции=1/2(ВС+АД)*ВК.
В равнобедренной трапеции квадрат высоты равен произведению ее оснований т е ВК=корень из ВС*АД. Подставим значение в формулу площади:
S=1/2(ВС+АД)*корень из ВС*АД=1/2*(х+3х)*корень из х*3х=2х*хкорней из 3;
Из этого уравнение выражаем 2х^2=98корней из3/корень из 3; х=7(см)-ВС, тогда АД=3х=21(см).
Средняя линия трапеции равна полусумме длин ее оснований: Ср л=1/2(ВС+АД)=1/2*28=14(см).
1.В равнобокой трапеции АБСД, где АБ=ЦД=26, а БЦ=7 проведём высоту БК на основание АД. Тогда в треугольнике АБК, где угол К=90, а тангенс угла А = 2.4 имеем:
БК/АК=2.4 или БК=2.4*АК. По теореме Пифагора БК^2+АК^2=АБ^2.
Подставляя предыдущее равенствополучим:
(2.4*АК)^2+АК^2=АБ^2
или 6.76*АК^2=26^2=676
Отсюда
АК^2=100
АК=10.
2. Проведём высоту ЦМ на основание АД. Тогда в прямоугольнике КБЦМ КМ=БЦ=7. МД=АК=10, поскольку треугольник МЦД симметричен треугольнику КБА относительно прямой, проходящей через середины оснований равнобокой трапеции.
3. АД=АК+КМ+МД=10+7+10=27.
Т к по условию угол СВА=ВСД=120 градусов, то угол А=Д=180-120=60градусов.
Проведем высоту ВК и получим прямоугольный треугольник АВК. Рассмотри его. Угол АВК=180-(60+90)=30 градусов => АК=1/2АВ, тогда пусть АК=х. Если провести вторую высоту из угла С, то отрезки АК=КР=РД=х (т е АД=3х), а АВ=СД=2х. ВС=КР=х.
Sтрапеции=1/2(ВС+АД)*ВК.
В равнобедренной трапеции квадрат высоты равен произведению ее оснований т е ВК=корень из ВС*АД. Подставим значение в формулу площади:
S=1/2(ВС+АД)*корень из ВС*АД=1/2*(х+3х)*корень из х*3х=2х*хкорней из 3;
Из этого уравнение выражаем 2х^2=98корней из3/корень из 3; х=7(см)-ВС, тогда АД=3х=21(см).
Средняя линия трапеции равна полусумме длин ее оснований: Ср л=1/2(ВС+АД)=1/2*28=14(см).
ОТВЕТ:14см.