Вправильной треугольной пирамиде перпендикуляр, проведенный из основы ее высоты к боковому ребру, равен d. найдите площадь боковой поверхности пирамиды, если двугранный угол между ее боковыми гранями равен альфа.
Правильный прямоугольник - многоугольник с равными сторонами - это квадрат. Центром окружности, описанной около прямоугольника , является точка пересечения его диагоналей. Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами. Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам. Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы. Обозначим гипотенузу D. D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2
Пусть А - начало координат.
Ось X - AB
Ось Y - AD
Ось Z - перпендикулярно ABCD в сторону S
Высота пирамиды ( из треугольника ACS )
√(5^2-25/2) = 5/√2
Координаты точек
P( 1;1;√2)
Q(2;0;0)
R(5;3;0)
S(2,5;2,5;5/√2)
D(0;5;0)
Вектор
SD (-2,5;2,5;-5/√2)
Уравнение плоскости PQR
ax+by+cz+d=0
подставляем координаты точек P Q R
a+b+√2c+d=0
2a+d=0
5a+3b+d=0
Пусть d= 2 Тогда a= -1 b= 1 c=-√2
Уравнение плоскости
-x+y-√2z+2=0
или
-2,5x +2,5y-5z/√2+5=0
нормальное уравнение плоскости
k= √(1+1+2)=2
-x/2+y/2-z/√2+1=0
a) Нормаль к плоскости PQR
-2,5x +2,5y-5z/√2+5=0
cовпадает с вектором
SD (-2,5;2,5;-5/√2)
Перпендикулярны
б) Подставляем координаты точки D(0;5;0) в нормальное уравнение плоскости PQR
-x/2+y/2-z/√2+1=0
для нахождения расстояния
5/2+1 = 3,5
Центром окружности, описанной около прямоугольника ,
является точка пересечения его диагоналей.
Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами.
Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам.
Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы.
Обозначим гипотенузу D.
D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2