В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
islamlg
islamlg
08.02.2023 17:16 •  Геометрия

Вправильной шестиугольной призме abcdefa1b1c1d1e1f1 стороны основания равны 2, а боковые ребра равны 4. n -середина отрезка ас. найдите расстояние от вершины а до плоскости na1d. если можно, то решите координатно-векторным методом

Показать ответ
Ответ:
Аня1ove
Аня1ove
01.10.2020 05:48

Координатный метод. 

(*** некоторые результаты, вроде того, что угол CAD= 30°; -  я привожу без пояснений и "доказательств", предполагается, что вам известны углы между диагоналями и их размеры в правильном шестиугольнике).

Начало координат в точке А, ось X вдоль AD, ось Y в плоскости основания перпендикулярно AD, ось Z - вдоль АА1. Еще я обозначу R = 2 (по смыслу это радиус описанной вокруг шестиугольника окружности). Кроме того, пусть К - проекция точки N на AD.

Плоскость NA1D пересекает ось Х в точке (4, 0, 0) и ось Z в точке (0, 0, 4). 

Кроме этого, она проходит через точку N. 

Координаты точки N (Nx, Ny, 0); Ny = NK равно половине высоты трапеции ABCD,

то есть Ny = (R*√3/2)/2 = √3/2; отсюда Nx = АК = 3/2; (потому что угол CAD равен 30°;) 

Чтобы построить уравнение плоскости NA1D, лучше всего найти координаты точки Q (0, q, 0), в которой прямая DN пересекает ось Y. Это проще, чем высчитывать определитель, задающий уравнение плоскости через координаты точек A1, D и N. 

Треугольники QAD и NKD подобны, поэтому 

AQ/AD = NK/KD; q/4 = (√3/2)/(4 - 3/2); q = 4√3/5;

То есть координаты точки Q (0, 4√3/5, 0); 

Уравнение плоскости A1QD ( она же - плоскость NA1D) теперь записывается автоматически

x/4 + y/(4√3/5) + z/4 = 1;

(если не понятно, как это получается - легко проверить, что точки (4,0,0) (0,4√3/5,0) и (0,0,4) удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость.)

(Примечание. Все предыдущие манипуляции преследовали только одну цель - найти, какой отрезок плоскость отсекает на оси Y.  В общем случае, если известно, что какая-то плоскость отсекает на осях - считая от начала координат, ориентированные отрезки a, b, c - то есть проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости записывается сразу x/a + y/b + z/c = 1). 

Это уравненние можно записать в виде скалярного произведения rp=1; 

r = (x,y,z); это радиус-вектор точки плоскости (то есть его абсолютная величина равна расстоянию от А до точки плоскости).

p = (1/4, 5/4√3, 1/4); 

Теперь задается вопрос "при каком r его длина минимальна?".

В такой постановке сразу ясно, что r коллинеарен (параллелен, пропорционален) p, поскольку при любом другом положении r его длина больше - так как косинус угла между r и p будет меньше 1).

В этом случае rp=1; (абсолютные величины!) и r = 1/p;

То есть для получения ответа осталось вычислить p = IpI;

p = √((1/4)^2 + (1/4)^2 + (5/4√3)^2) = √155/20; а искомое расстояние равно 4√155/31.

проверяйте, может я в числах где ошибся.  

 

Это копия моего решения вот я и тогда не был уверен в числах, и сейчас :)

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота