Впараллелограмме abcd точка m середина стороны cd известно что биссектриса угла c параллелограмма делит треугольник amd на две части равной площади найти длину сторону bc если ab=4
а) Заметим, что — центральный, а — его биссектриса, тогда — вписанный угол. Аналогично Поскольку и , то по двум равным углам треугольники и подобны, что и требовалось доказать.
б) Заметим, что верно, поскольку , тогда по теореме, обратной теореме Пифагора — прямоугольный, Найдем высоту , проведенную из Поскольку , коэффицент подобия равен Расстояние от точки B до прямой MK, равное высоте , проведенной из вершины , равно произведению коэффицента подобия и высоты
В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:
1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:
2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:
3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:
4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:
5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте:
Б
Объяснение:
а) Заметим, что — центральный, а — его биссектриса, тогда — вписанный угол. Аналогично Поскольку и , то по двум равным углам треугольники и подобны, что и требовалось доказать.
б) Заметим, что верно, поскольку , тогда по теореме, обратной теореме Пифагора — прямоугольный, Найдем высоту , проведенную из Поскольку , коэффицент подобия равен Расстояние от точки B до прямой MK, равное высоте , проведенной из вершины , равно произведению коэффицента подобия и высоты
ответ: б) 84
¬
25
В таких заданиях в основном ведётся работа с формулами. Прежде, чем притупить к заданям, вспомним формулу основного тригоносетрического тождества, которая в основном тут и будет использоваться:
1) Если мы воспользуемся основным тригоносетрическим тождеством, выразив оттуда косинус в квадрате, то получим как раз таки это выражение, значит его можно упростить так:
2) Аналогично предыдущему, тоже опираясь на основное тригоносетрическое тождество, получим:
3) Это выражение для начала можно сложить по формуле разности квадратов, после чего преобразуем полученное выражение так же, как и во втором:
4) Опять же, опираясь на основное тригоносетрическое тождество можно синус в квадрате плюс косинус в квадрате заменить на единицу, в результате чего мы получим:
5) Вынесем за скобку синус, а полученное выражение преубразуем, опять же, как во втором пункте: