Возьмите произвольный треугольник и постройте гомотетичный ему треугольник относительно данного центра гомотетии. Выполните задание приняв k = 2; k = 1/2. Выполните предыдущее задание, заменяя треугольник на квадрат и окружность.
(Выполните хотя бы первое)
дано: δ авс
∠с = 90°
ак - биссектр.
ак = 18 см
км = 9 см
найти: ∠акв
решение.
т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км.
рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°.
т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30°
рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60°
искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120°
ответ: 120°
Дано:
треугольник АВС — равнобедренный,
АВ = ВС = 7 сантиметров,
АС = 6 сантиметров,
BD — высота.
Найти длину высоты BD — ?
Рассмотрим равнобедренный треугольник АВС. Высота BD является медианой. Тогда АD = DС = АС : 2 = 6 : 2 = 3 сантиметров.
Рассмотрим прямоугольный треугольник АВD. По теореме Пифагора (квадрат гипотенузы равен сумме квадратов катетов):
АD^2 + ВD^2 = АВ^2 (выразим из данного равенства катет ВD^2);
ВD^2 = АВ^2 - АD^2;
ВD^2 = 7^2 - 3^2;
ВD^2 = 49 - 9;
ВD^2 = 40;
ВD = 2√ 10 сантиметров.
ответ: 2√ 10 сантиметров.
Объяснение: