Востроугольном треугольнике abc длины медиан bm, cn и высоты ah равны соответственно: корень из 41, корень из 65, и 8. найдите площадь треугольника бредовые решения не писать.
Медианы точкой пересечения делятся в отношении 2 к 1 начиная от угла, из которого построены. а из этого высота из точки пересечения медиан O к стороне ВС OH₂ = 1/3AH₁ = 8/3 OB = 2/3√41 BH₂² + OH₂² = OB² BH₂² = 4/9*41 - 64/9 = 100/9 BH₂ = 10/3 --- OC = 2/3√65 CH₂² + OH₂² = OB² CH₂² = 4/9*65 - 64/9 = 196/9 CH₂ = 14/3 --- BC = BH₂ + CH₂ = 24/3 = 8 S (ABC) = 1/2*BC*AH₁ = 1/2*8*8 = 32
OH₂ = 1/3AH₁ = 8/3
OB = 2/3√41
BH₂² + OH₂² = OB²
BH₂² = 4/9*41 - 64/9 = 100/9
BH₂ = 10/3
---
OC = 2/3√65
CH₂² + OH₂² = OB²
CH₂² = 4/9*65 - 64/9 = 196/9
CH₂ = 14/3
---
BC = BH₂ + CH₂ = 24/3 = 8
S (ABC) = 1/2*BC*AH₁ = 1/2*8*8 = 32