плоскости альфа и бета параллельны. точки n1, n2 и m1, m2 принадлежат этим плоскостям так, что прямые n1m1 и n2m2 пересекаются в точке p. вычислить pn1 и pm2, если n1m1 = 6 дм, pn2 = 25 см, pm: pn2 = 3: 2
Из условия: 1) основание - квадрат 2) проекция стороны на основание -прямоугольный треугольник 3) в разрезе пирамиды по углам и вершине тоже треугольник
решение: треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60° проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов ) это и будет ответом - (4/ tg60°) / sin 45°
1) Возможно, тут и как-то по-другому нужно доказывать, но так тоже всё верно: , как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥ ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости: Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости. ⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠ ЧТД
Можно по теореме о трёх перпендикулярах: Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной. Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠ ЧТД
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник
решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°
, как диагонали равных квадратов, значит Δ - равнобедренный, О - середина АС, значит - медиана, биссектриса и высота, то есть ⊥
ЧТД
2) Можно по достаточному условию перпендикулярности прямой и плоскости:
Для перпендикулярности заданных прямой и плоскости достаточно, чтобы прямая была перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
⊥ , ⊥ , значит ⊥ , и перпендикулярна любой прямой этой плоскости, в том числе , значит ∠
ЧТД
Можно по теореме о трёх перпендикулярах:
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна её проекции, то она перпендикулярна и самой наклонной.
Здесь ещё проще: АВ проведена через основание наклонной , - проекция на плоскость АВС и ⊥, значит ⊥ и ∠
ЧТД