Вокружность радиуса `sqrt (19)` вписана ломаная abc, причем ab=`6-sqrt(2)`, bc=`3+sqrt(2)`. из середины k меньшей из двух дуг ac опущен перпендикуляр km на хорду ab. найдите длину отрезка am.
С точки зрения "трудности" эта задача - элементарная. В заблуждение вводят "сложные корни". Несколько удивляет ответ - от радиуса окружности он не зависит.
Если в треугольнике АВС обозначить Ф1 = угол ВСА, Ф2 = угол ВАС,
С точки зрения "трудности" эта задача - элементарная. В заблуждение вводят "сложные корни". Несколько удивляет ответ - от радиуса окружности он не зависит.
Если в треугольнике АВС обозначить Ф1 = угол ВСА, Ф2 = угол ВАС,
то совершенно очевидно, что
угол КОВ = Ф1 + Ф2; (полусумма центральных углов)
AK = 2*R*sin(Ф1/2 + Ф2/2);
угол КАВ = (угол КОВ)/2 = Ф1/2 - Ф2/2;
и АМ = АК*cos(Ф1/2 - Ф2/2) = R*2*sin(Ф1/2 + Ф2/2)*cos(Ф1/2 - Ф2/2) = R*(sin(Ф1) + sin(Ф2)) = = АВ/2 + ВС/2 = 9/2;
Проверьте, может я чего напутал :) знак не тот где поставил