В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Яна12133
Яна12133
07.03.2020 00:40 •  Геометрия

Вокруг шара описан цилиндр.найти отношение площади сферы к площади полной поверхности цилиндра.

Показать ответ
Ответ:
sdsdsgttu
sdsdsgttu
26.05.2020 07:41

Объяснение решения длинное, хотя само решение очень короткое. 
Диаметр основания цилиндра и его высота равны диаметру сферы, вокруг которой описан цилиндр.
Обозначим радиус сферы R, тогда и радиус оснований цилиндра будет R, а его высота - 2R, так как сечение такого описанного вокруг сферы цилиндра - квадрат.

Площадь поверхности сферы равна произведению числа π ( π = 3,14) на квадрат диаметра круга или, иначе, равна произведению числа π ( π = 3,14) на квадрат радиуса круга, умноженного на 4.
Формула площади поверхности сферы имеет следующий вид:
S=π·D²=π·4·R²

Полная площадь поверхности цилиндра равна сумме площади боковой поверхности цилиндра и двойной площади основания цилиндра.
S=2π*R*h+2πR²=2πR(h+R)
Здесь h=2R, поэтому
S=2πR(2R+R) =2πR*3R=6πR²
Чтобы найти отношение площади сферы к площади полной поверхности цилиндра, делим одну площадь на другую:
Sсферы : S цилиндра= =4πR²:6πR²=2/3

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота