1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см. Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
асательная прямая t к окружности c пересекает окружность в единственной точке t. для сравнения, секущие прямые пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих преобразованиях[en], таких как подобие, вращение, параллельный перенос, инверсия и картографическая проекция. говоря техническим языком, эти преобразования не меняют структуру инцидентности касательных прямых и окружностей, даже если сами прямые и окружности деформируются.
радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют осевую симметрию относительно радиуса (к точке касания).
по теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).
никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку p с центром окружности o (см. рисунок справа). в этом случае отрезки от точки p до двух точек касания имеют одинаковую длину. по теореме о степени точки квадрат длины отрезка до точки касания равен степени точки p относительно окружности c. эта степень равна произведению расстояний от точки p до двух точек пересечения окружности любой секущей линией, проходящей через p.
угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.
касательная прямая t и точка касания t свойством сопряжённости друг другу; это соответствие можно обобщить в идею о полюсе и поляре. такая же взаимосвязь существует между точкой p вне окружности и секущей линией, соединяющей две точки касания.
если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.
если хорда tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.
угол A равен 470 . Найдите угол C и угол B.
2. AB и AC – отрезки касательных, проведенных к окружности радиуса 6 см. Найдите длинуOA и AC, если AB = 8 см.
3. Точки A и B делят окружность с центром O на дуги AMB и ACB так, что дуга ACB на 800меньше дуги AMB. AM – диаметр окружности. Найдите углы AMB, ABM, ACB.
4. Найдите радиус окружности, вписанной в треугольник, и радиус окружности, описанной около треугольника, стороны которого равны 16 см, 17 см и 17 см.
Контрольная работа № 5 по теме: «Окружность» Вариант 2
1. Дана окружность с центром в точке O. AB –диаметр, точка C отмечена на окружности,
асательная прямая t к окружности c пересекает окружность в единственной точке t. для сравнения, секущие прямые пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих преобразованиях[en], таких как подобие, вращение, параллельный перенос, инверсия и картографическая проекция. говоря техническим языком, эти преобразования не меняют структуру инцидентности касательных прямых и окружностей, даже если сами прямые и окружности деформируются.
радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют осевую симметрию относительно радиуса (к точке касания).
по теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку p с центром окружности o (см. рисунок справа). в этом случае отрезки от точки p до двух точек касания имеют одинаковую длину. по теореме о степени точки квадрат длины отрезка до точки касания равен степени точки p относительно окружности c. эта степень равна произведению расстояний от точки p до двух точек пересечения окружности любой секущей линией, проходящей через p.
угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.касательная прямая t и точка касания t свойством сопряжённости друг другу; это соответствие можно обобщить в идею о полюсе и поляре. такая же взаимосвязь существует между точкой p вне окружности и секущей линией, соединяющей две точки касания.
если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.
если хорда tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.