Во На рисунке отрезки AB и CD пересекаются в точке 0. Отрезок OB равен отрезку 0С, а угол В равен углу С. Можно ли утверждать, что отрезок АО равен отрезку D0? ответ и обоснование:
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Вравнобедренном треугольнике высота к основанию и медиана к основанию - это одно и то же. а расстояние от середины боковой стороны до основания в 2 раза меньше, чем расстояние от вершины, то есть - высота к основанию.половина высоты к основанию равна 9, значит вся эта высота (она же - медиана) равна 18. точка пересечения медиан делит медиану на части в отношении 1/2, считая от стороны, то есть - в данном случае - на отрезки 6 и 12 см (отношение 1/2, сумма 18). поскольку медиана эта перпендикулярна основанию, то 6 см - и есть расстояние от точки пересечения медиан до основания. ответ 6 см.
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас