Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Прямой угол меньше тупого угла. Поэтому высота тупоугольного треугольника, проведенная из вершины острого угла, всегда расположена вне самого треугольника и пересекает не саму сторону, к которой проведена, а её продолжение. Об этом важно помнить.
В равнобедренном треугольнике АВС углы при основании АС равны по (180°- ∠АВС):2=(180°-112°):2=34°
АF- биссектриса. Поэтому ∠FAC=∠BAF= ∠ BAC:2=34°:2=17°
Из суммы углов треугольника
∠BFA=180°-∠BAF-∠ABF=180°-17°-112°=51°
Сумма острых углов прямоугольного треугольника 90° ⇒
∠НАF=90°-51°=39°
Объяснение: