Есть два решения))) 1) используя т.Пифагора... 2) используя формулу для площади треугольника... S = p*r, где р--полупериметр, r--радиус вписанной окружности получается, что площадь прямоугольного треугольника = 5 радиусы вписанной в прямоугольный треугольник окружности отсекают на катетах квадрат))) если обозначить оставшиеся части катетов (х) и (у) и вспомнить, что отрезки касательных, проведенных к окружности из одной точки, равны, то получим: (х+1) + (у+1) + (х+у) = 10 --- периметр треугольника 2х + 2у = 8 х+у = 4 а площадь прямоугольного треугольника может быть вычислена как половина произведения катетов... S = 5 = (x+1)*(y+1) = xy + x + y + 1 = xy + 5 xy = 0 ---т.е. или х=0 или у=0 ---> треугольник не существует такой...
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
1) используя т.Пифагора...
2) используя формулу для площади треугольника...
S = p*r, где р--полупериметр, r--радиус вписанной окружности
получается, что площадь прямоугольного треугольника = 5
радиусы вписанной в прямоугольный треугольник окружности отсекают на катетах квадрат)))
если обозначить оставшиеся части катетов (х) и (у) и вспомнить, что отрезки касательных, проведенных к окружности из одной точки, равны, то получим:
(х+1) + (у+1) + (х+у) = 10 --- периметр треугольника
2х + 2у = 8
х+у = 4
а площадь прямоугольного треугольника может быть вычислена как половина произведения катетов... S = 5 = (x+1)*(y+1) = xy + x + y + 1 = xy + 5
xy = 0 ---т.е. или х=0 или у=0 ---> треугольник не существует такой...
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность