Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
ответ: S=65a²/121.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.