Виписати в зошит 5 речень з числівниками, обов'язково вказавши джерело, з якого взяті речення. Зробити повний синтаксичний розбір одного речення на вибір (підкреслити всі члени речення, надписати над словами частину мови, характеристика речення)
2. Так как известно, что KL перпендикулярно АВ, то углы ALK и BLK равны 90 градусам. Также нас даны равные углы в условии AKL и BKL, а сторона KL - общая, следовательно, треугольники равны по двум углам и стороне между ними (второй признак равенства треугольников).
3. Периметр треугольника =a+b+c a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других Для первого случая: пусть a=15, тогда 15+b+c=28 b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда 14+b+c=28 b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда 13+b+c=28 b+c=15 > a, следовательно ДА
a) Докажите, что KM перпендикулярно AC. Проведём секущую плоскость через точку К перпендикулярно грани АА1С1С. Так как точка К - это середина А1В1, то эта плоскость пересечёт сторону АС в половине её половины, то есть отсечёт (1/4) АС и это как раз точка М, которая делит ребро AC в отношении AM:MC = 1:3. А любая прямая, в том числе и КМ, лежащая в плоскости, перпендикулярной АС, будет перпендикулярна АС. Условие доказано.
б) Найдите угол между прямой KM и плоскостью ABB1, если AB=6, AC=8 и AA1 =3. Чтобы определить этот угол, надо найти плоский угол, а для этого надо спроецировать отрезок КМ на плоскость АВВ1. Пусть проекция точки М на эту плоскость - точка М1. ММ1 ⊥ АВ. Проекция точки К на АВ - точка К1. Определяем параметры отрезков на основании АВС. Высота из точки В на АС - это ВД. ВД = √(АВ²-(АС/2)²) = √(6²-(8/2)²) = √(36-16) = √20 = 2√5. Из подобия треугольников К1М = (1/2)ВД = √5. Отрезок: КМ = √((К1М)²+(КК1)²) = √(5+9) = √14. К1М1 = К1М*cos(B/2) = √5*(2√5/6) = 5/3. КМ1 = √((К1М1)²+(КК1)²) = √((25/9)+9) = √106/3. Отсюда определяем косинус искомого угла: cos(M1KM) = KM1/KM = (√106/3)/√14 ≈ 0,917208. Отсюда угол между отрезком КМ и плоскостью АВВ1 равен 0,409782 радиан или 23,47879°.
ответ: угол между прямой KM и плоскостью ABB1 равен 23,47879°.
3. Периметр треугольника =a+b+c
a+b+c=28. Треугольник существует тогда, когда каждая его сторона МЕНЬШЕ суммы двух других
Для первого случая: пусть a=15, тогда
15+b+c=28
b+c=13 < a, следовательно НЕТ
Для второго случая: пусть a=14, тогда
14+b+c=28
b+c=14 = a, следовательно НЕТ
Для третьего случая: пусть a=13, тогда
13+b+c=28
b+c=15 > a, следовательно ДА
Проведём секущую плоскость через точку К перпендикулярно грани АА1С1С.
Так как точка К - это середина А1В1, то эта плоскость пересечёт сторону АС в половине её половины, то есть отсечёт (1/4) АС и это как раз точка М, которая делит ребро AC в отношении AM:MC = 1:3.
А любая прямая, в том числе и КМ, лежащая в плоскости, перпендикулярной АС, будет перпендикулярна АС.
Условие доказано.
б) Найдите угол между прямой KM и плоскостью ABB1, если AB=6, AC=8 и AA1 =3.
Чтобы определить этот угол, надо найти плоский угол, а для этого надо спроецировать отрезок КМ на плоскость АВВ1.
Пусть проекция точки М на эту плоскость - точка М1. ММ1 ⊥ АВ.
Проекция точки К на АВ - точка К1.
Определяем параметры отрезков на основании АВС.
Высота из точки В на АС - это ВД.
ВД = √(АВ²-(АС/2)²) = √(6²-(8/2)²) = √(36-16) = √20 = 2√5.
Из подобия треугольников К1М = (1/2)ВД = √5.
Отрезок: КМ = √((К1М)²+(КК1)²) = √(5+9) = √14.
К1М1 = К1М*cos(B/2) = √5*(2√5/6) = 5/3.
КМ1 = √((К1М1)²+(КК1)²) = √((25/9)+9) = √106/3.
Отсюда определяем косинус искомого угла:
cos(M1KM) = KM1/KM = (√106/3)/√14 ≈ 0,917208.
Отсюда угол между отрезком КМ и плоскостью АВВ1 равен 0,409782 радиан или 23,47879°.
ответ: угол между прямой KM и плоскостью ABB1 равен 23,47879°.