Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5.
Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".
Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен
r = (3х + 4х - 5х)/2 = х;
То есть x = 8, и стороны ВСР таковы 24, 32, 40.
На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку у "чисто" египетсткого треугольника 3,4,5 r = 1).
В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.
Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Проведем перпендикуляры из точки М, находящейся между плоскостями, к плоскости a (MB) и плоскости b (МА). Получили два прямоугольных треугольника АМС и ВМС с общей гипотенузой МС - искомым расстоянием от точки М до ребра двугранного угла. Причем из треугольника АМС: МС= АМ/Sinx, а из треугольника ВМС: МС=ВМ/Sin(30-x). Итак, АМ/Sinx=ВМ/Sin(30-x) или 1/Sinx=√3/Sin(30-x). Sin(30-x)=√3Sinx. Sin(30-x)=Sin30Cosx-Cos30*Sinx. Или Sin(30-x)=(1/2)Cosx-√3/2Sinx=√3Sinx. Разделим обе части на √3Sinx. ctgx=3√3. х=11° (по таблице) Sin11°=0,19. Тогда МС=1/0,19=5,26дм. ответ: МС=5,26дм.
Поскольку тангенс угла ВАС равен 3/4, треугольник АВС - "египетский", то есть подобный треугольнику со сторонами 3,4,5.
Высота к гипотенузе СР делит треугольник АВС на два, ему же подобных (из за равенства острых углов), то есть треугольник ВСР тоже "египетский".
Следовательно, его стороны можно представить, как 3х, 4х, 5х, и радиус вписанной окружности равен
r = (3х + 4х - 5х)/2 = х;
То есть x = 8, и стороны ВСР таковы 24, 32, 40.
На самом деле, ответ уже найден, поскольку соотношение r = (3х + 4х - 5х)/2 = х; связывает коэффициент подобия с радиусом (они просто равны, поскольку у "чисто" египетсткого треугольника 3,4,5 r = 1).
В данном случае ВС = 40, и она соответствует стороне 3, то есть r = 40/3.
находящейся между плоскостями, к плоскости a (MB) и плоскости b (МА). Получили два прямоугольных треугольника АМС и ВМС с общей гипотенузой МС - искомым расстоянием от точки М до ребра
двугранного угла. Причем из треугольника АМС: МС= АМ/Sinx, а из треугольника ВМС: МС=ВМ/Sin(30-x).
Итак, АМ/Sinx=ВМ/Sin(30-x) или 1/Sinx=√3/Sin(30-x).
Sin(30-x)=√3Sinx.
Sin(30-x)=Sin30Cosx-Cos30*Sinx.
Или Sin(30-x)=(1/2)Cosx-√3/2Sinx=√3Sinx. Разделим обе части на √3Sinx.
ctgx=3√3. х=11° (по таблице)
Sin11°=0,19. Тогда
МС=1/0,19=5,26дм.
ответ: МС=5,26дм.