Вопрос не совсем понятен, но определим длины векторов: Модуль вектора |ab|=√[(Xb-Xa)²+(Yb-Ya)²] или |ab|=√[(-2+4)²+(4-1)²]=√13. Модуль вектора |bc|=√[(Xc-Xb)²+(Yc-Yb)²] или bc|=√[(2+2)²+(5-4)²]=√17. Модуль вектора |cd|=√[(Xd-Xc)²+(Yd-Yc)²] или |cd|=√[(0-2)²+(2-5)²]=√13. Модуль вектора |ad|=√[(Xd-Xa)²+(Yd-Ya)²] или |ad|=√[(0+4)²+(2-1)²]=√17. Модуль вектора |ac|=√[(Xc-Xa)²+(Yc-Ya)²] или |ac|=√[(2+4)²+(5-1)²]=√52. Модуль вектора |bd|=√[(Xd-Xb)²+(Yd-Yb)²] или |bd|=√[(0+2)²+(2-4)²]=√8. Верные равенства: Равны МОДУЛИ векторов |AB|=|CD| и |BC|=|AD|, а так как равные вектора это сонаправленные вектора, с равными модулями, то равны вектора АВ=DС, BA=CD, CB=DA и BC=AD.
Если гипотенуза АВ параллельна оси Ох, то точки А и В - противоположные. A(-x1; y1); B(x1; y1); |AB| = 2x1 Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1 |AC|^2 = (x2+x1)^2 + (y1-y2)^2 |BC|^2 = (x2-x1)^2 + (y1-y2)^2 По теореме Пифагора |AC|^2 + |BC|^2 = |AB|^2 (x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2 x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0 2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0 x2^2 + (y1-y2)^2 - x1^2 = 0 (y1 - y2)^2 = x1^2 - x2^2 Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2 (x1^2 - x2^2)^2 = x1^2 - x2^2 Число равно своему квадрату, значит, оно равно 0 или 1. (x1^2 - x2^2) = (y1 - y2) = 0 или 1 Но 0 разность ординат точек А и С равняться не может, значит, y1 - y2 = 1 Но разность ординат - это и есть высота треугольника.
Модуль вектора |ab|=√[(Xb-Xa)²+(Yb-Ya)²] или |ab|=√[(-2+4)²+(4-1)²]=√13.
Модуль вектора |bc|=√[(Xc-Xb)²+(Yc-Yb)²] или bc|=√[(2+2)²+(5-4)²]=√17.
Модуль вектора |cd|=√[(Xd-Xc)²+(Yd-Yc)²] или |cd|=√[(0-2)²+(2-5)²]=√13.
Модуль вектора |ad|=√[(Xd-Xa)²+(Yd-Ya)²] или |ad|=√[(0+4)²+(2-1)²]=√17.
Модуль вектора |ac|=√[(Xc-Xa)²+(Yc-Ya)²] или |ac|=√[(2+4)²+(5-1)²]=√52.
Модуль вектора |bd|=√[(Xd-Xb)²+(Yd-Yb)²] или |bd|=√[(0+2)²+(2-4)²]=√8.
Верные равенства:
Равны МОДУЛИ векторов |AB|=|CD| и |BC|=|AD|,
а так как равные вектора это сонаправленные вектора, с равными модулями, то
равны вектора АВ=DС, BA=CD, CB=DA и BC=AD.
A(-x1; y1); B(x1; y1); |AB| = 2x1
Точка С лежит между ними. C(x2; y2); -x1 < x2 < x1
|AC|^2 = (x2+x1)^2 + (y1-y2)^2
|BC|^2 = (x2-x1)^2 + (y1-y2)^2
По теореме Пифагора
|AC|^2 + |BC|^2 = |AB|^2
(x2+x1)^2 + (y1-y2)^2 + (x2-x1)^2 + (y1-y2)^2 = 4x1^2
x2^2 + 2x1*x2 + x1^2 + 2(y1-y2)^2 + x2^2 - 2x1*x2 + x1^2 - 4x1^2 = 0
2x2^2 + 2(y1-y2)^2 - 2x1^2 = 0
x2^2 + (y1-y2)^2 - x1^2 = 0
(y1 - y2)^2 = x1^2 - x2^2
Вспомним, что это парабола y = x^2, и y1 = x1^2; y2 = x2^2
(x1^2 - x2^2)^2 = x1^2 - x2^2
Число равно своему квадрату, значит, оно равно 0 или 1.
(x1^2 - x2^2) = (y1 - y2) = 0 или 1
Но 0 разность ординат точек А и С равняться не может, значит,
y1 - y2 = 1
Но разность ординат - это и есть высота треугольника.