1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
А) ABCD -квадрат. АН=НВ=√(AS²-SH²) или АН=√(5-3)=√2.АВ=√(2АH²) или АН=√4=2. АВ=ВС=СD=AD=MN=2. NH=MN/2=1.NS=√(AS²-SH²) или NS=√(NH²+SH²)=√(1+3)=2. В треугольнике MNS стороны NM=NS=2, то есть треугольник MNS равносторонний и высота NT является медианой. Таким образом точка Т - середина отрезка SM, что и требовалось доказать.
б) NT и SС - скрещивающиеся прямые, так как они лежат в разных плоскостях и не имеют общих точек. Расстояние между скрещивающимися прямыми - это расстояние между одной из прямых и плоскостью, проведенной через вторую прямую параллельно первой. Проведем через точку Т прямую параллельно прямой SC. Тогда плоскость PNQ, проведенная через прямую NT, параллельна прямой SC по построению (PQ║SC). Искомое расстояние - это перпендикуляр из любой точки прямой SC опущенный на плоскость PNQ. Рассмотрим пирамиду NCDS (приложение 2). Перпендикуляр ТК к стороне SC - нужное расстояние, т.к. NT перпендикулярна плоскости CDS, значит, и любой прямой, проходящей через Т. Получили подобные ∆ MCS и KTS по острому углу S. Тогда КТ/МС=ST/SС. Отсюда искомое расстояние ТК=ST*MC/SC. НайдемSM по Пифагору: SM=√(SC^2-CM^2) или SM=√(5-1)=2. ST=SM/2 или ST=1.TK=1*1/√5=√5/5. Это ответ.
Дано: равносторонний треугольник АВС, R = 20 см
Найти: P - ?
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
Р = 3 * 20√3 = 60√3
ответ: 60√3
В треугольнике MNS стороны NM=NS=2, то есть треугольник MNS равносторонний и высота NT является медианой. Таким образом точка Т - середина отрезка SM, что и требовалось доказать.
б) NT и SС - скрещивающиеся прямые, так как они лежат в разных плоскостях и не имеют общих точек. Расстояние между скрещивающимися прямыми - это расстояние между одной из прямых и плоскостью, проведенной через вторую прямую параллельно первой. Проведем через точку Т прямую параллельно прямой SC. Тогда плоскость PNQ, проведенная через прямую NT, параллельна прямой SC по построению (PQ║SC). Искомое расстояние - это перпендикуляр из любой точки прямой SC опущенный на плоскость PNQ.
Рассмотрим пирамиду NCDS (приложение 2). Перпендикуляр ТК к стороне SC - нужное расстояние, т.к. NT перпендикулярна плоскости CDS, значит, и любой прямой, проходящей через Т. Получили подобные ∆ MCS и KTS по острому углу S. Тогда КТ/МС=ST/SС. Отсюда искомое расстояние ТК=ST*MC/SC.
НайдемSM по Пифагору: SM=√(SC^2-CM^2) или SM=√(5-1)=2. ST=SM/2 или ST=1.TK=1*1/√5=√5/5. Это ответ.