Вершина А треугольника ABC принадлежит плоскости альфа, а вершины В и С лежат вне этой плоскости. Продолжения медиан ВМ и CN тре-
угольника ABC пересекают плоскость C. в точках К и Е соответственно. Докажите, что точки A, К и Е лежат на одной прямой.
ответ:AB= 2,4 см
ВС=3 см
СД=2,4 см
АД=3см
Объяснение:
Там достаточно легко. Смотри если там есть пропорция (:) то это значит что будет x-коэфициен пропорцийности. (Не знаю как будет на русском) значит например AB- 4x
BC-5x (возьмём только две стороны; больше не надо)
Далее записуем формулу пириметра P=2(a+b)
P=2(AB+BC)
Дольше подставляешь, то что известно.
Выходит 10,8= 2*(4х+5х) и решаешь
10,8=18х
Неизвестные в левую часть, известные в правую.
18х=10,8
Потом находим х. Это умножение. Значит надо добуток (хз как в русском) поделить на известный множник.
х=10,8:18
х=0,6
теперь просто если это параллелограм то АВ=СД= 2,4 см
ВС=АД= 3 см
Вроде всё. Изменяюсь за ошибки. Пыталась объяснить своими словами. Если вы знаете хорошо английский, то можете с моими вопросами у меня на странички. А то я в нем не сильна
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .