Это как бы достаточно классическая задача. А такая пирамида называется тетраэдр. Правильная пирамида. Очень правильная.
Назови вершины банальными буквами ABCD. Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней. Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2. Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2. Теорема Пифагора нам тут имеем: х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате); х = а * корень ( 2) / 2.
Дано:
AO=CO
угол BAO = углу DCO
угол OCD=37⁰
угол ODC=63⁰
угол COD=80⁰
Док-ть:
тр. AOB = тр. COD
Найти:
углы AOB, ABO, BAO - ?
Док-во:
Рассмотрим тр. AOB и COD
- AO=OC - по условию
- угол BAO = углу DCO - по условию
- угол AOB = углу COD - как вертикальные
След-но треугольники равны по стороне и двум прилежащим к ней углам.
тр. AOB = тр. COD ч.т.д.
:
угол BAO = углу DCO - по условию ⇒ угол BAO = 37⁰
угол COD = углу AOB - из док-ва ⇒ угол AOB = 80⁰
угол угол ABO = 180⁰-37⁰-80⁰ = 63⁰
:
Из вышеописанного док-ва тр. AOB = тр. COD:
угол BAO = углу DCO = 37⁰
угол COD = углу AOB = 80⁰
угол CDO = углу ABO = 63⁰
Назови вершины банальными буквами ABCD.
Далее надо заметить, что отрезок, являющийся расстоянием между двумя противоположными рёбрами (длину которого мы ищем, назовём его банальной букой х), лежит в плоскости, содержащей одно из рёбер, и точку середины противоположного ребра. Точнее даже, этот самый отрезок является высотой равнобедренного треугольника, образованного одним из рёбер, и высотами двух соседних граней.
Чему равна высота в равностороннем треугольнике со стороной а? Стандартная формула: а * корень(3) / 2.
Итак, что мы имеем: необходимо найти высоту равнобедренного треугольника, в основании которого лежит ребро а, а обе боковые стороны равны, как только что нашли, а * корень(3) / 2.
Теорема Пифагора нам тут имеем:
х = корень ( (а*корень(3)/2 ) в квадрате - (1/2а) в квадрате);
х = а * корень ( 2) / 2.
Такой получается ответ.