Вариант 2.
1. [ ] Точка М – середина отрезка АВ. Найдите координаты точки В, если М(2;1) и
А(6;-2).
2. [ ] a) АВ – диаметр окружности с центром О. Найдите координаты центра
окружности, если А(4;3) и В (4;-3).
[ ] b) Запишите уравнение окружности, используя условия пункта а).
3. [ ] Выполнив построение, выясните взаимное расположение двух окружностей,
заданных уравнениями (х+3)2 + (у-2)2 = 16 и (х-2)2 + (у-4)2 = 4.
4. [ ] Точки А(1;1), В(10;1), С(10;7), D(7;7) – вершины прямоугольной трапеции с
основаниями АВ и CD. Найдите длину средней линии и площадь трапеции.
...........
Объяснение:
Мы видим прямоугольный треугольник, так как два катета образуют прямой угол. Нам дан радиус, который находится вписанной окружности в квадрат.
Найдём радиус вписанной окружности в квадрат:
R=a/2. а это сторона квадрата.
R=6/2=3.
Гипотенуза данного прямоугольного треугольника будет и являться апофермой. Радиус это катет, также нам дан второй катет, который является высотой. Высоту обозначим а, радиус обозначим б, и гипотенуза с. Найдём гипотенузу, то есть апоферму по теореме Пифагора:
с^2=а^2+б^2
с^2=4^2+3^2=16+9=25
с=√25=5
Значит апоферма равна 5.
Думаю рисунок будет понятен. Буквы подставляйте сами.
Также хочу добавить что сторона квадрата является основанием пирамиды.
1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π