Считаем тр-к равнобедренным, т.О пересечение биссектрис; если угол при вершине по условию 120 гр., то равные углы при основании А и С=(180-120)/2=30гр.; биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка. Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка. Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр. Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(
биссектриса АЕ делит угол А на 2 по 15 гр.; рассм. тр-к АОД, он прямоугольный, т.к. биссектриса ВД является медианой и высотой равнобедренного тр-ка.
Угол АОД=90-15=75 гр. по свойству острых углов прямоугольного тр-ка.
Углы АОД и ВОЕ вертикальные, значит угол ВОЕ=75гр.
Аналогично угол FOB=75гр. Значит угол между биссектрисами АЕ и CF угол FOE=75+75=150 гр.
параллелепипеде верны следующие равенства:
\begin{gathered}\vec{AB}=\vec{A_1B_1}=\vec{DC}=\vec{D_1C_1}\\\vec{BC}=\vec{B_1C_1}=\vec{AD}=\vec{A_1D_1}\\\vec{AA_1}=\vec{BB_1}=\vec{DD_1}=\vec{CC_1}\\\end{gathered}AB=A1B1=DC=D1C1BC=B1C1=AD=A1D1AA1=BB1=DD1=CC1
следовательно
\begin{gathered}\vec{AB}+\vec{B_1C_1}+\vec{DD_1}+\vec{CD}=\vec{AB}+\vec{BC}+\vec{CD}+\vec{DD_1}=\vec{AD_1}vec{BD_1}-\vec{B_1C_1}=\vec{BD_1}-\vec{BC}=\vec{CD_1}\end{gathered}AB+B1C1+DD1+CD=AB+BC+CD+DD1=AD1BD1−B1C1=BD1−BC=CD1
2.\begin{gathered}\vec{BN}=\vec{BD}+\vec{DN}=\vec d +\frac{1}{2}\vec{DS}=\vec d+\frac{1}{2}(\vec{BS}-\vec{BD})=\\=\vec d+\frac{1}{2}\vec{BS}-\frac{1}{2}\vec d=\frac{1}{2}\vec d+\frac{1}{2}(\frac{1}{2}(\vec{BA}+\vec{BC}))=\frac{1}{2}\vec d + \frac{1}{4}\vec a + \frac{1}{4}\vec c\end{gathered}BN=BD+DN=d+21DS=d+21(BS−BD)==d+21BS−21d=21d+21(