Ваня поднялся по неподвижному эскалатору метро насчитал на нём не менее 90 ступенек и 8 фонарей. чему равно расстояние между соседними фонарями если высота одной ступеньки равна 20 см.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Теорема 30-градусного угла прямоугольного треугольника такова: сторона, противолежащая 30-и градусам в прямоугольном треугольнике — равен половине гипотенузы, тоесть: HB = 4 => BC = 4*2 = 8.
<B = 60° => <A = 90-60 = 30°.
По той же теореме следует это: BC = 8 => AB = 8*2 = 16.
HB = 4 => AH = 16-4 = 12.
Вывод: AH = 12.
4.
<OAB & <CDO — пара накрест лежащих углов, так ка прямые параллельны, то накрест лежащие углы друг другу равны, тоесть: <CDO = 47°.
<AOB = 90° => <COD = 90° (так как вертикальные углы).
<COD = 90°; <CDO = 47° => <DCO = 90-47 = 43°.
Вывод: <CDO = 47°; <DCO = 43°; <COD = 90°.
5.
Тема: Равенство треугольников.
По какому-то там признаку (не помню номер) — если 3 угла из каждого треугольника равны, то треугольники также друг другу равны.
Определим же эти углы: Так как прямыеу паралелльны, то накрест лежащие углы равны, тоесть: <ODB == <ACO. Нашл первую пару равных углов!
Вторая пара накрест лежащих друг другу равных углов: <CAO; <OBD.
Вторую пару то определили.
Так как <AOC = 90°, то его вертикальный угол — <DOB — также равен 90 градусам.
Доказали, что в двух треугольниках имеется 3 определения углов, что и означает, что треугольники равны.
И так как треугольники равны, то OB == AO; DO == OC.
Так как треугольники имеют 2 общей стороны, то против вертикальных прямых углов — лежат другу другу равные стороны — DB; AC.
6.
<A = 60° => <C = 30°.
По теореме 30-грдусного угла — катет AB — равен половине гипотенузы AC.
BM — медиана, потому что делит гипотенуз пополам, и также медиана прямоугольного треугольника, проведёнаня к гипотенузе — равна её половине, тоесть: BM == MC == AM = AC/2 = 5 => AC = 5*2 = 10.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
3.
<B = 60° => <HCB = 90-60 = 30° .
Теорема 30-градусного угла прямоугольного треугольника такова: сторона, противолежащая 30-и градусам в прямоугольном треугольнике — равен половине гипотенузы, тоесть: HB = 4 => BC = 4*2 = 8.
<B = 60° => <A = 90-60 = 30°.
По той же теореме следует это: BC = 8 => AB = 8*2 = 16.
HB = 4 => AH = 16-4 = 12.
Вывод: AH = 12.
4.
<OAB & <CDO — пара накрест лежащих углов, так ка прямые параллельны, то накрест лежащие углы друг другу равны, тоесть: <CDO = 47°.
<AOB = 90° => <COD = 90° (так как вертикальные углы).
<COD = 90°; <CDO = 47° => <DCO = 90-47 = 43°.
Вывод: <CDO = 47°; <DCO = 43°; <COD = 90°.
5.
Тема: Равенство треугольников.
По какому-то там признаку (не помню номер) — если 3 угла из каждого треугольника равны, то треугольники также друг другу равны.
Определим же эти углы: Так как прямыеу паралелльны, то накрест лежащие углы равны, тоесть: <ODB == <ACO. Нашл первую пару равных углов!
Вторая пара накрест лежащих друг другу равных углов: <CAO; <OBD.
Вторую пару то определили.
Так как <AOC = 90°, то его вертикальный угол — <DOB — также равен 90 градусам.
Доказали, что в двух треугольниках имеется 3 определения углов, что и означает, что треугольники равны.
И так как треугольники равны, то OB == AO; DO == OC.
Так как треугольники имеют 2 общей стороны, то против вертикальных прямых углов — лежат другу другу равные стороны — DB; AC.
6.
<A = 60° => <C = 30°.
По теореме 30-грдусного угла — катет AB — равен половине гипотенузы AC.
BM — медиана, потому что делит гипотенуз пополам, и также медиана прямоугольного треугольника, проведёнаня к гипотенузе — равна её половине, тоесть: BM == MC == AM = AC/2 = 5 => AC = 5*2 = 10.
BM == MC => <MBE == <MCE = 30° (<C = 30°).
<EMC = 90°; <C = 30° => <ME = MC/2 = 5/2 = 2.5.
Вывод: ME = 2.5.