Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
Одна из основ трапеции на 12 см больше другой а периметр трапеции равен 52 см (см. рис). Диагональ трапеции делит острый угол пополам. Установите соответствие между отрезком и его длиной
Отрезок:
1. Меньшее основание трапеции
2. Большая основа трапеции
3. Высота трапеции
4. Средняя линия трапеции
Длина:
А) 8 см
Б) 10 см
В) 16 см
Г) 20 см
Д) 22 см
------------
Биссектриса острого угла трапеции отсекает от трапеции равнобедренный треугольник. Если эта биссектриса является и диагональю трапеции, то малое основание трапеции боковой стороне
В условии задания не сказано, что трапеция равнобедренная, но все цифирки даны именно из этого предположения!
Считаем трапецию равнобедренной. Тогда из условия, что одно основание длиннее другого на 12 см получаем
x + x + x + x + 12 = 52
x = 10 см
1. Меньшее основание трапеции
ВС = x = 10 см
2. Большее основание трапеции
АД = х + 12 = 10 + 12 = 22 см
3. Высота находится сложнее
Проекции боковых рёбер на основание равны
АГ = ЕД
ГЕ = 10 см
АД = АГ + ГЕ + ЕД = 2*АГ + 10 = 22
2*АГ = 12
АГ = 6 см
По т. Пифагора
АВ² = АГ² + ВГ²
10² = 6² + ВГ²
100 = 36 + ВГ²
ВГ² = 64
ВГ = 8 см, и это высота
4. Средняя линия трапеции равна половине суммы оснований
(ВС + АД)/2 = (10 + 22)/2 = 16 см
----------------------
Но в условии ошибка, для трапеции с неравными боковыми сторонами всё не так.
Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ΔB₁C₁D: ∠C₁ = 90°,
B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3
ΔDCC₁: ∠C = 90°, по теореме Пифагора
СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда
V = Sосн·H = 6² · 6√2 = 216√2
У меня с украинским не очень, поэтому...
Одна из основ трапеции на 12 см больше другой а периметр трапеции равен 52 см (см. рис). Диагональ трапеции делит острый угол пополам. Установите соответствие между отрезком и его длиной
Отрезок:
1. Меньшее основание трапеции
2. Большая основа трапеции
3. Высота трапеции
4. Средняя линия трапеции
Длина:
А) 8 см
Б) 10 см
В) 16 см
Г) 20 см
Д) 22 см
------------
Биссектриса острого угла трапеции отсекает от трапеции равнобедренный треугольник. Если эта биссектриса является и диагональю трапеции, то малое основание трапеции боковой стороне
В условии задания не сказано, что трапеция равнобедренная, но все цифирки даны именно из этого предположения!
Считаем трапецию равнобедренной. Тогда из условия, что одно основание длиннее другого на 12 см получаем
x + x + x + x + 12 = 52
x = 10 см
1. Меньшее основание трапеции
ВС = x = 10 см
2. Большее основание трапеции
АД = х + 12 = 10 + 12 = 22 см
3. Высота находится сложнее
Проекции боковых рёбер на основание равны
АГ = ЕД
ГЕ = 10 см
АД = АГ + ГЕ + ЕД = 2*АГ + 10 = 22
2*АГ = 12
АГ = 6 см
По т. Пифагора
АВ² = АГ² + ВГ²
10² = 6² + ВГ²
100 = 36 + ВГ²
ВГ² = 64
ВГ = 8 см, и это высота
4. Средняя линия трапеции равна половине суммы оснований
(ВС + АД)/2 = (10 + 22)/2 = 16 см
----------------------
Но в условии ошибка, для трапеции с неравными боковыми сторонами всё не так.