1.Розглянемо трикутники АОС і DOB . В них СО = OB ( за умовою) . CD Х АВ в т. О. ( це пояснює те, що СД поділений на 2 рівні частини, тобто СО= ОД) Виходить, що ОА=ОВ.
Отже трикутник АОС і ДОВ є рівнобеденими ( за двома сторонами і спільною вершиною)
Доведено
2. Розглянемо трикутники КМН і КРН. В них МН = КР ( за умовою) , КМ = РН ( за умовою) , кут НКР = КНР=МНК=МКН ( за умовою) . К прямокутнику всі кути рівні =90°, тобто кут Р = куту М.
Виходить, що дані трикутники рівні за 2 сторонами, кутами при основі і вершиною цих трикутників.
1. АОС = DOB
2. КМN=KPN
Объяснение:
1.Розглянемо трикутники АОС і DOB . В них СО = OB ( за умовою) . CD Х АВ в т. О. ( це пояснює те, що СД поділений на 2 рівні частини, тобто СО= ОД) Виходить, що ОА=ОВ.
Отже трикутник АОС і ДОВ є рівнобеденими ( за двома сторонами і спільною вершиною)
Доведено
2. Розглянемо трикутники КМН і КРН. В них МН = КР ( за умовою) , КМ = РН ( за умовою) , кут НКР = КНР=МНК=МКН ( за умовою) . К прямокутнику всі кути рівні =90°, тобто кут Р = куту М.
Виходить, що дані трикутники рівні за 2 сторонами, кутами при основі і вершиною цих трикутників.
Доведено