В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Kamjla1
Kamjla1
20.03.2020 15:03 •  Геометрия

В выпуклом четырехугольнике ABCD известно, что ∠BCD = ∠CDA ⩾ 90◦ . Биссектрисы углов A и B пересекаются в точке M на стороне CD. Докажите, что M — середина CD.

Показать ответ
Ответ:
Анкта
Анкта
24.07.2022 09:51

Доказали, что точка М - середина CD.

Объяснение:

В выпуклом четырехугольнике ABCD известно, что ∠BCD = ∠CDA ⩾ 90◦. Биссектрисы углов A и B пересекаются в точке M на стороне CD. Докажите, что M — середина CD.

Дано: АВСD - выпуклый четырехугольник;

∠BCD = ∠CDA ⩾ 90◦;

ВМ и АМ - биссектрисы ∠В и ∠А соответственно;

М ∈ CD;

Доказать: М - середина CD.

Доказательство:

Продолжим стороны ВС и АD до пересечения. Поставим точку К.

Соединим К и М.

1. Рассмотрим ΔАВК.

ВМ и АМ - биссектрисы ∠В и ∠А соответственно. (условие)

Биссектрисы внутренних углов треугольника пересекаются в одной точке.

⇒ КМ - биссектриса ∠К.

2. Рассмотрим ΔDCK.

Сумма смежных углов равна 180°.

⇒ ∠DCK = 180° - ∠BCD

   ∠CDK = 180° - ∠CDA

   ∠BCD = ∠CDA (условие)

⇒  ∠DCK = ∠CDK

Если в треугольнике два равных угла, то этот треугольник равнобедренный.

⇒ ΔDCK - равнобедренный.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой.

⇒ СМ = MD.

Доказали, что точка М - середина CD.


В выпуклом четырехугольнике ABCD известно, что ∠BCD = ∠CDA ⩾ 90◦ . Биссектрисы углов A и B пересекаю
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота