В треугольной пирамиде SABC известны боковые рёбра: SA = SB = 7, SC = 5. Основанием высоты этой пирамиды является середина медианы CM треугольника ABC. Эта высота равна 4. Докажите, что треугольник ABC равнобедренный.
Сторона правильної чотирикутної піраміди дорівнює а , а її діагональний переріз – рівносторонній трикутник. Знайдіть об’єм піраміди. 2. Висота правильної чотирикутної піраміди дорівнює 12 см, а апофема – 15 см. Обчисліть площу бічної поверхні піраміди. 3. Сторона основи правильної трикутної піраміди дорівнює 6 см, а висота піраміди - см. Знайдіть площу бічної поверхні піраміди. 4. Сторона основи правильної трикутної піраміди дорівнює 8 см, а бічна грань нахилена до площини основи під кутом 300. Знайдіть площу повної поверхні піраміди. 5. Основа піраміди – трикутник зі сторонами 13 см, 14 см і 15 см. Знайдіть площу перерізу, який проходить паралельно площині основи і ділить висоту піраміди у відношенні 1:2. Рахуючи від вершини піраміди. Знайдіть об‘єм правильної чотирикутної піраміди, сторона основи якої дорівнює 6 см, а діагональний переріз є рівностороннім трикутником
Пусть S₁ - это площадь бо́льшего треугольника, а S₂ - площадь меньшего треугольника.
Пусть k > 1 (это значит, что в числителе будет стоять бо́льший треугольник).
Площади подобных треугольников относятся как квадрат коэффициента подобия.Отсюда -
1,28 (ед²).
- - -
Случай 2 - Площадь меньшего треугольника равна 8 (ед²).В этом случае наоборот k < 1 (в числителе будет стоять меньший треугольник).
S₁ - площадь бо́льшего треугольника, S₂ - площадь меньшего треугольника
Тогда -
50 (ед²).
Сторона правильної чотирикутної піраміди дорівнює а , а її діагональний переріз – рівносторонній трикутник. Знайдіть об’єм піраміди. 2. Висота правильної чотирикутної піраміди дорівнює 12 см, а апофема – 15 см. Обчисліть площу бічної поверхні піраміди. 3. Сторона основи правильної трикутної піраміди дорівнює 6 см, а висота піраміди - см. Знайдіть площу бічної поверхні піраміди. 4. Сторона основи правильної трикутної піраміди дорівнює 8 см, а бічна грань нахилена до площини основи під кутом 300. Знайдіть площу повної поверхні піраміди. 5. Основа піраміди – трикутник зі сторонами 13 см, 14 см і 15 см. Знайдіть площу перерізу, який проходить паралельно площині основи і ділить висоту піраміди у відношенні 1:2. Рахуючи від вершини піраміди. Знайдіть об‘єм правильної чотирикутної піраміди, сторона основи якої дорівнює 6 см, а діагональний переріз є рівностороннім трикутником