В треугольной пирамиде ABCD суммы трех плоских углов при каждой из вершин B и D равны 180 градус и AC=BD. Радиус шара, вписанного в эту пирамиду, равен 3 см. Найдите длину высоты пирамиды, опущенной из вершины A.
Следует отметить, что расстояние от точки А до прямой а равно расстоянию от точки В до прямой а, так как прямая а параллельна АВ (по условию), а расстояние есть перпендикуляр опущенный на прямую. Рассматриваем треугольник образованный стороной ВС (гипотенуза), расстоянием от В до прямой а (катет) и отрезком на прямой а. Этот треугольник прямоугольный. Угол В - 30°, . В прямоугольном треугольнике против угла 30° лежит катет равный половине гипотенузы. 14/2=7 см. Расстояние от В до а (= от А до а) = 7 см.
14/2=7 см.
Расстояние от В до а (= от А до а) = 7 см.
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:Угол BAC,угол APQ = ABC, угол AQP =ACB.Коэффициент подобия этих треугольников k = AP:(PB +AP) =
=3:(2 + 3) = 3:5
PQ = BC *k = 10 * 3:5 = 6 cм
2.Поскольку плоскость параллельна ВС, то прямая PQ параллельна ВС
PQ параллельна BC
Получилось два подобных треугольника
ΔAPQ подобен ΔABC по трем углам:угол BAC,угол APQ=ABC,
угол AQP = ACB.
коэффициент подобия этих треугольников К= PQ:BC = 1:4
АР = АВ *k = 16 * 1:4 = 4 см
Сорри за качество фотки.