В треугольнике OBM, изображенном на рисунке, угол BOM=90°(∠O=90°),BM=12,∠BMO=30° проведена окружность с центром в точке B . Каким должен быть её радиус,чтобы :
a)окружность касалась прямой MO;
b)окружность не имела общих точек с прямой MO;
c) окружность имела две общие точки с прямой MO?
ответ: 20 и 30
2. Очевидно, что данный угол - тот, который у нижнего основания (т.к. у верхнего основания углы >90°). Проводим две высоты. Здесь так же, как и в предыдущей задаче, образуются два равных прямоугольных треугольника с катетами 3 (т.к. отсекается прямоугольник со стороной 6, как верхнее основание) и с углами 60° и 90-60= 30°. Катет лежащий напротив угла в 30 градусов равен половине гипотенузы => высота=3*2=6
ответ:6
а) центром окружности, вписанной в треугольник является точка пересечения биссектрис (достаточно провести две) б) центром окружности, описанной около треугольника является точка пересечения серединных перпендикуляров к его сторонам (достаточно провести два) в) вневписанных окружностей у треугольника три - у каждой стороны своя окружность,центр каждой лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах (достаточно провести два) не забудь дочертить ещё две к другим сторонам