Пусть АВСД - паралеллограмм. АВ=СД=4 см, ВС=АД=5 см. АС=корень(61), угол А и угол С - острые.
(противоложные стороны параллелограмма равны, противоположные углы параллелограмма равны)
Тогда по теоремме косинусов
cos (B)=cos (D)=(AB^2+BC^2-AC^2)/(2*AB*BC)
cos (B)=cos (D)=(4^2+5^2-(корень(61))^2)/(2*4*5)=-1/2
отсюда угол В=угол Д=120 градусов
угол А+угол В=180 градусов (сумма углов при одной стороне параллелограмма равна 180 градусов)
угол А=угол С=180-120=60 градусов
ответ: 60 градусов, 120 градусов, 60 градусов, 120 градусов
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4
Пусть АВСД - паралеллограмм. АВ=СД=4 см, ВС=АД=5 см. АС=корень(61), угол А и угол С - острые.
(противоложные стороны параллелограмма равны, противоположные углы параллелограмма равны)
Тогда по теоремме косинусов
cos (B)=cos (D)=(AB^2+BC^2-AC^2)/(2*AB*BC)
cos (B)=cos (D)=(4^2+5^2-(корень(61))^2)/(2*4*5)=-1/2
отсюда угол В=угол Д=120 градусов
угол А+угол В=180 градусов (сумма углов при одной стороне параллелограмма равна 180 градусов)
угол А=угол С=180-120=60 градусов
ответ: 60 градусов, 120 градусов, 60 градусов, 120 градусов