В треугольнике DEF DE EF 23 см. средние перпендикуляры DF Определяем стенку на К нукте, длинную стенку DF, если периметр более 75 см. Помагите шестое задания
А) Каждая сторона параллелограмма является параллельным переносом противолежащей стороны. При параллельном переносе отрезка в пространстве, каждая его произвольная точка (x; y; z) переходит в точку с координатами (x + a; y + b; z + c)
Найдем числа a, b, c в случае параллельного переноса отрезка AB в отрезок CD.
Для этого рассмотрим параллельный перенос точки B в точку C: (6 + a; -6 + b; 2 + c) = (10; 0; 4)
Соответственно: a = 10 – 6 = 4; b = 0 – (-6) = 6; c = 4 – 2 = 2
Аналогично рассмотрим параллельный перенос точки A в точку D: (-6 + a; -4 + b; 0 + c) = (-6 + 4; -4 + 6; 0 + 2) = (-2; 2; 2)
ОАВС - тетраэдр. Точки К, Р, Т лежат на ребрах, не выходящих из одной вершины. Строим сечение. Соединяешь К и Р, поскольку они лежат в одной плоскости. (Кстати, как не располагай эти три точки, то две из них всегда будут лежать в одной плоскости) КР - одна сторона сечения. ОК - линия пересечения плоскостей АОС и ВОС. На этой прямой будет лежать общая точка, по которой плоскость сечения пересечет эти две плоскости. Поэтому продлеваешь кант ОС и проводишь прямую КТ, поскольку точки К и Т лежат в одной плоскости. Прямая КТ пересечет ОК в точке Е. Точки Е и Р лежат в одной плоскости ВОС, поэтому проводишь прямую ЕР. Она пересечет плоскость АВС в точке М. Точки М и Т лежат в одной плоскости АВС, поэтому соединяешь М и Т. ТКРМ - искомое сечение. (Кстати, чертить проще чем объяснять)
Найдем числа a, b, c в случае параллельного переноса отрезка AB в отрезок CD.
Для этого рассмотрим параллельный перенос точки B в точку C:
(6 + a; -6 + b; 2 + c) = (10; 0; 4)
Соответственно: a = 10 – 6 = 4; b = 0 – (-6) = 6; c = 4 – 2 = 2
Аналогично рассмотрим параллельный перенос точки A в точку D:
(-6 + a; -4 + b; 0 + c) = (-6 + 4; -4 + 6; 0 + 2) = (-2; 2; 2)
Следовательно, координаты точки D (-2; 2; 2)
б) Координатами вектора AC будут: 10 – (-6) = 16, 0 – (-4) = 4, 4 – 0 = 4;
|AC| = sqrt(16^2 + 4^2 + 4^2)
|AC| = sqrt(288)
Координатами вектора BD будут: -2 – 6 = -8, 2 – (-6) = 8, 2 – 2 = 0;
|BD| = sqrt((-8)^2 + 8^2 + 0^2)
|BD| = sqrt(128)
Значит, cos a = AC*BD : |AC|*|BD| = (16*(-8) + 4*8 + 4*0): sqrt(128) * sqrt(288) =
-96 : 192 = -0,5
Следовательно, угол равен 120
Строим сечение.
Соединяешь К и Р, поскольку они лежат в одной плоскости. (Кстати, как не располагай эти три точки, то две из них всегда будут лежать в одной плоскости)
КР - одна сторона сечения.
ОК - линия пересечения плоскостей АОС и ВОС. На этой прямой будет лежать общая точка, по которой плоскость сечения пересечет эти две плоскости. Поэтому продлеваешь кант ОС и проводишь прямую КТ, поскольку точки К и Т лежат в одной плоскости. Прямая КТ пересечет ОК в точке Е. Точки Е и Р лежат в одной плоскости ВОС, поэтому проводишь прямую ЕР. Она пересечет плоскость АВС в точке М. Точки М и Т лежат в одной плоскости АВС, поэтому соединяешь М и Т.
ТКРМ - искомое сечение.
(Кстати, чертить проще чем объяснять)