В треугольнике АВС стороны АВ и АС равны. На стороне АС взяли точки Х и Y так, что точка Х лежит между точками А и Y и AX = BX = BY. Найдите величину угла CBY, если ∠XBY =28°
Для нахождения Р надо знать длины сторон фигуры АВСД; Известно ВС=19; найдем сторону АВ; Проведем биссектриссы из углов А и В до пересечения в точке К; Имеем треугольник АВК-прямоугольный, так как он является половиной равнобедренного треугольника АВС и его биссектрисса угла В и высота будет катетом в этом треугольнике АВК. Расстояние от прямого угла К до стороны АВ является его высотой и h=7 ; Применяя теорему о пропорциональности в прямоугольном треугольнике_|_ опущенного с вершины прямого угла на гипотенузу и обозначив АВ как 2Х, для удобства, получим КВ=Х; и далее:АВ:АК=ВК:h; 2X/X\/3=X/7; Откуда Х=14/\/3; Значит АВ=2Х=28/\/3; В целом имеем:2(19+28\/3), ответ:Р=2(19+28\/3)
По свойствам параллелограмма противоположные стороны равны, значит bc=ad=9 известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим: P=2(6+9) P=2*15 P=30
известно соотношение отрезков ak относится к kd как 2 части стороны ad к 1 части, т.е. частей всего 3. Получается что ak=9/3*2=6, а kd=3
Согласно свойствам биссектрисы параллелограмма, биссектриса отсекает равнобедренный треугольник, в нашем случае, это треугольник abk. А поскольку боковые стороны равнобедренного треугольника равны получаем, что ak=ab=6
Формула периметра параллелограмма: P=2(a+b), где a и b - стороны, подставим наши значения получим:
P=2(6+9)
P=2*15
P=30